1M Words By 8 bit

CS18LV82933

		Cover	Sheet and Revision Status	
版別 (Rev.)	DCC No.	生效日 (Eff. Date)	變更說明 (Change Description)	發行人 (Originator)
1.0 2.0	- 20200019	(Eff. Date) Aug. 17, 2016 Dec. 29, 2020	(Change Description) New issue Revise ICC (operating current) 45ns- 30mA, 55ns- 30mA, 70ns- 25mA	Hank Lin Hank Lin

CS18LV82933

1M Words By 8 bit

PRODUCT DESCRIPTION	1
FEATURES	1
PRODUCT FAMILY	1
PIN CONFIGURATIONS	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	
TRUTH TABLE	
ABSOLUTE MAXIMUM RATINGS (1)	
OPERATING RANGE	4
DC ELECTRICAL CHARACTERISTICS (TA = 0~70°C / -40°C~85°C, VCC = 3.0V)	4
CAPACITANCE ⁽¹⁾ (TA = 25°C, f =1.0 MHz)	5
DATA RETENTION CHARACTERISTICS (TA = 0~+70°C / -40°C~+85°C)	5
LOW Vcc DATA RETENTION WAVEFORM (1) (/CE1 Controlled)	6
LOW Vcc DATA RETENTION WAVEFORM (2) (CE2 Controlled)	6
AC TEST CONDITIONS	
KEY TO SWITCHING WAVEFORMS	
AC TEST LOADS	7
AC ELECTRICAL CHARACTERISTICS (TA = 0~+70°C / -40°C~+85°C, VCC = 3.0V)	7
AC ELECTRICAL CHARACTERISTICS (TA = 0~+70°C / -40°C~+85°C, VCC = 3.0V)	8
SWITCHING WAVEFORMS (READ CYCLE)	8
SWITCHING WAVEFORMS (WRITE CYCLE)	9
ORDER INFORMATION	11
PACKAGE OLITLINE	12

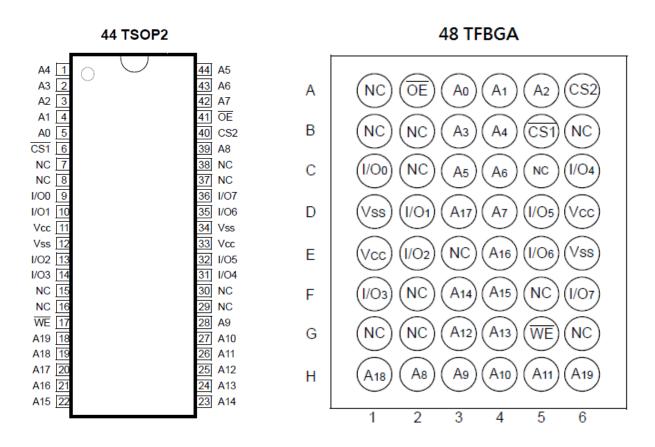
1M Words By 8 bit

CS18LV82933

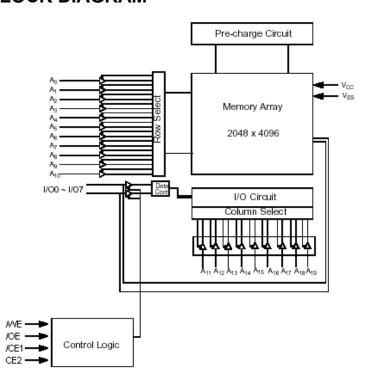
PRODUCT DESCRIPTION

The CS18LV82933 is a high performance, high speed, low power CMOS Static Random Access Memory organized as 1M words by 8 bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced 90nm Full CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 0.3uA and maximum access time of 45/55/70ns in 3.0V operation. Easy memory expansion is provided by an active LOW chip enable1 (/CE1), active HIGH chip enable2 (CE2) and active LOW output enable (/OE) and three-state output drivers.

The CS18LV82933 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS18LV82933 is available in Jedec standard 44L TSOP 2 and 48TFBGA-6x8mm packages.


FEATURES

- Low operation voltage: 2.7 ~ 3.6V
- Ultra low power consumption :
 - operating current: 30mA (Max.) @t_{AA}=45ns
- Fast access time: 45/55/70ns (Max.)
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible, fully static operation
- Data retention supply voltage as low as 1.5V.


PRODUCT FAMILY

Product Family	Operating Temp	Vcc. Range (V)	Speed (ns)	Package Type
CS18LV82933	0 ~ 70°C	2.7 ~ 3.6	45/55/70	44 TSOP 2
C3 10LV02933	-40 ~ 85°C	2.1 ~ 3.0	45/55/70	48 TFBGA

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

1M Words By 8 bit

CS18LV82933

PIN DESCRIPTIONS

Name	Type	Function		
A0 – A19	Input	20 address inputs for selecting one of the 1M x 8 bit words in the RAM		
/CE1 & CE2	Input	/CE1 is active LOW and CE2 is active high. Chip enable must be active when data read from or write to the device. If chip enable is not active, the device is deselected and in a standby power mode. The I/O pins will be in high impedance state when the device is deselected.		
/WE	Input	The Write enable input is active LOW. It controls read and write operations. With the chip selected, when /WE is HIGH and /OE is LOW, output data will be present on the I/O pins, when /WE is LOW, the data present on the I/O pins will be written into the selected memory location.		
/OE	Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the I/O pins and they will be enabled. The I/O pins will be in the high impedance state when /OE is inactive.		
I/O0~I/O7	I/O	These 8 bi-directional ports are used to read data from or write data into the RAM.		
Vcc	Power	Power Supply		
Vss	Power	Ground		

TRUTH TABLE

MODE	/CE1	CE2	/WE	/OE	I/O0~I/O7	Vcc Current
Standby	Н	X	X	X	High Z	Iccsb, Iccsb1
Standby	Х	L	Х	Х	High Z	Iccsb, Iccsb1
Output Disabled	L	Н	Н	Н	High Z	Icc
Read	L	Н	Н	L	D оит	Icc
Write	L	Н	L	Х	Din	Icc

Note: X means don't care. (Must be low or high state)

1M Words By 8 bit

CS18LV82933

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
VIN , VOUT	Voltage on Any Pin Relative to Vss	-0.5 to Vcc+0.5V	V
Vcc	Voltage on Vcc supply Relative to Vss	-0.5 to 4.6	V
TA	Operating Temperature	-40 to +85	οС
P _D	Power Dissipation	1.0	W

Stresses greater than those listed above "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0~70°C	2.7V ~ 3.6V
Industrial	-40~85°C	2.7V ~ 3.6V

DC ELECTRICAL CHARACTERISTICS (TA = 0~70°C / -40°C~85°C, VCC = 3.0V)

Parameter Name	Parameter	Test Conduction	MIN	TYP (1)	MAX	Unit
V _{IL}	Guaranteed Input Low Voltage (2)		-0.3		0.8	V
ViH	Guaranteed Input High Voltage ⁽²⁾		2.2		Vcc+0.3	V
lι∟	Input Leakage Current	V _{IN} =V _{SS} to V _{CC}	-1		1	uA
loL	Output Leakage Current	/CE1=V _{IH} and CE2=V _{IL} , or /OE=V _{IH} or /WE=V _{IL} or V _{IO} =V _{SS} to V _{CC}	-1		1	uA
Vol	Output Low Voltage	I _{OL} = 2.1 mA			0.4	٧
Vон	Output High Voltage	I _{ОН} = -1mA	2.4			V

1M Words By 8 bit

CS18LV82933

	Operating Dower	/CE1=V _{IL} and	45ns	25	
Icc	Operating Power Supply Current	CE2=V _{IH} , I _{IO} =0mA,	55ns	25	mA
	Supply Current	F=F _{MAX} (3)	70ns	20	
looop	Standby Supply	/CE1=V _{IH} and CE2=V _{II}	, Other	0.5	mA
Iccsb	-TTL	pins= V _{IH} or V _{IL}		0.5	ША
Iccs _{B1}	Standby	/CE1≧V _{CC} -0.2V or CE	2≦0.2V,	15	uA
ICCSB1	Current-CMOS	V _{IN} ≧V _{CC} -0.2V or V _{IN} ≦	≦0.2V	10	u/\

^{1.} Typical characteristics are at T_A = 25 $^{\circ}$ C

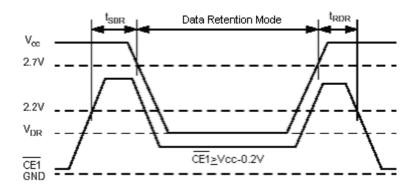
- Overshoot: Vcc+2.0V in case of pulse width≤20ns,
 Undershoot:-2.0V in case of pulse width≤20ns
 - Overshoot and undershoot are sampled, not 100% tested.
- 3. $Fmax = 1/t_{RC}$

CAPACITANCE $^{(1)}$ (TA = 25°C, f =1.0 MHz)

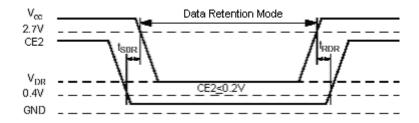
Symbol	Parameter	Conditions	MAX.	Unit
CIN	Input Capacitance	V _{IN} =0V	6	pF
C _{IO}	Input/output Capacitance	V _{I/O} =0V	8	pF

^{1.} Capacitance is samples, not 100% tested.

DATA RETENTION CHARACTERISTICS (TA = 0~+70°C / -40°C~+85°C)


Parameter Name	Parameter	Test Conduction	MIN	TYP ⁽¹⁾	MAX	Unit
V_{DR}	V _{CC} for Data	/CE1 \ge Vcc-0.2V or CE2 \le 0.2V,	1.5			٧
V DR	Retention	$V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$	1.5			V
	Data Retention	/CE1 \ge Vcc-0.2V or CE2 \le 0.2V,				
Iccdr	Current	V _{CC} =1.5V V _{IN} ≧V _{CC} -0.2V or		4	15	uA
	Current	V _{IN} ≦0.2V				
	Chip Deselect to					
tsdr	Data Retention		0			ns
	Time	See Retention Waveform				
toon	Operation		t _{RC} (2)			no
trdr	Recovery Time		¹RC (=/			ns

- 1. V_{CC} = 3.0V, TA = +25 $^{\circ}C$
- 2. t_{RC} = Read Cycle Time.


CS18LV82933

LOW V_{CC} DATA RETENTION WAVEFORM (1) (/CE1 Controlled)

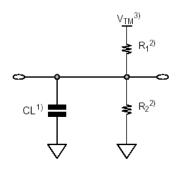
1M Words By 8 bit

LOW Vcc DATA RETENTION WAVEFORM (2) (CE2 Controlled)

AC TEST CONDITIONS

Input Pulse Levels	0V~2.5V
Input Rise and Fall	3ns
Times	3115
Input and Output	
Timing Reference	1.5V
Level	
Output Load	See Below

KEY TO SWITCHING WAVEFORMS


WAVEFORMS	INPUTS	OUTPUTS			
	MUST BE	MUST BE STEADY			
	STEADY	WUST BE STEADY			
	MAY				
	CHANGE	WILL BE CHANGE			
	FROM H TO	FROM H TO L			
	L				

1M Words By 8 bit

CS18LV82933

AC TEST LOADS

- Including scope and Jig capacitance
- 2. R₁=3070 ohm, R₂=3150 ohm
- 3. V_{TM}=2.8V

MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

AC ELECTRICAL CHARACTERISTICS (TA = $0 \sim +70$ °C / -40°C $\sim +85$ °C, VCC = 3.0V)

< READ CYCLE >

JEDEC	Parameter		45ns		55	ns	70		
Parameter Name	Name	Description	Min	Max	Min	Max	Min	Max	Unit
tavax	t _{RC}	Read Cycle Time	45		55		70		ns
tavqv	taa	Address Access Time		45		55		70	ns
tELQV	tco	Chip Select Access Time (/CE1, CE2)		45		55		70	ns
t _{GLQV}	toE	Output Enable to Output Valid		22		25		35	ns
telqx	t _L z	Chip Select to Output Low Z (/CE1, CE2)	10		10		10		ns
tGLQX	toLZ	Output Enable to Output in Low Z			5		5		ns
t _{EHQZ}	t _{HZ}	Chip Deselect to Output in High Z (/CE1, CE2)		18		20		25	ns
t _{GHQZ}	tонz	Output Disable to Output in High Z		18		20		25	ns
t _{AXOX}	t _{он}	Out Disable to Address Change	10		10		10		ns

1M Words By 8 bit

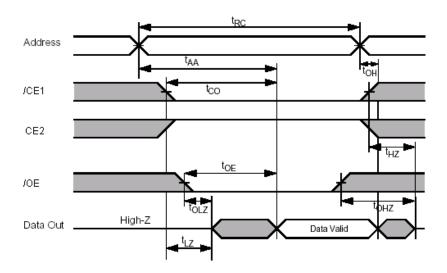
CS18LV82933

AC ELECTRICAL CHARACTERISTICS (TA = 0~+70°C / -40°C~+85°C, VCC = 3.0V)


< WRITE CYCLE >

JEDEC	Parameter		45	ns	55ns		70ns		
Parameter Name	Name	Description	Min	Max	Min	Max	Min	Max	Unit
tavax	twc	Write Cycle Time	45		55		70		ns
t _{E1LWH}	tcw	Chip Select to End of Write	35		40		60		ns
tavwl	tas	Address Setup Time	0		0		0		ns
tavwh	taw	Address Valid to End of Write	35		45		60		ns
twLwH	twp	Write Pulse Width	35	35			55		ns
twhax	twR	Write Recovery Time (/CE1, CE2, /WE)	0		0		0		ns
twlqz	twnz	Write to Output in High Z		18		20		25	ns
t _{DVWH}	t _{DW}	Data to Write Time Overlap	25		25		30		ns
twndx	tон	Data Hold from Write Time	0		0		0		ns
twнох	tow	End of Write to Output Active	5		5		5		ns

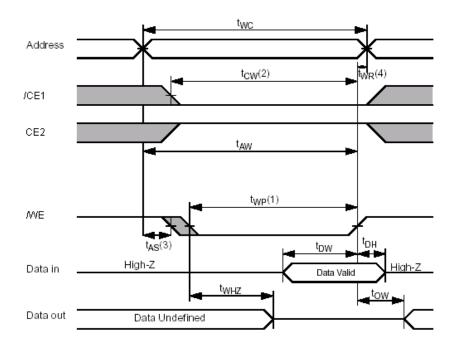
SWITCHING WAVEFORMS (READ CYCLE)


Read CYCLE 1.

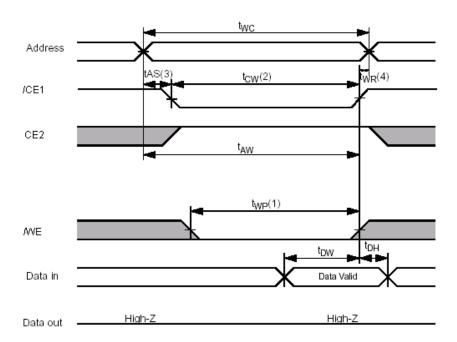
(Address Controlled, /CE1=/OE=VIL, CE2=/WE=VIH)

1M Words By 8 bit

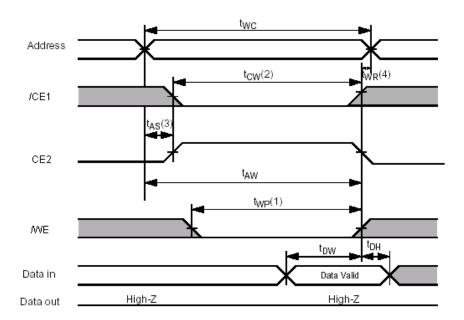
Read CYCLE 2. (/WE=VIH)



NOTES:


- 1. t_{HZ} and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device interconnection.

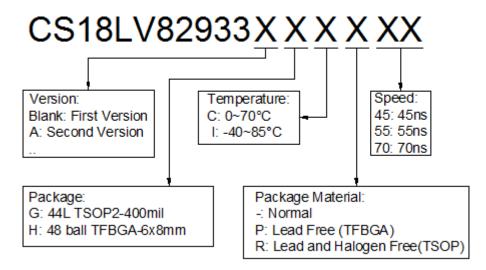
SWITCHING WAVEFORMS (WRITE CYCLE)


WRITE CYCLE 1 (/WE Controlled)

WRITE CYCLE 2 (/CE1 Controlled)

WRITE CYCLE 3 (CE2 Controlled)

NOTES:

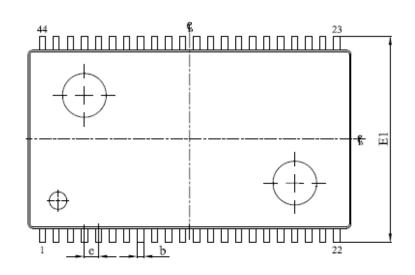

- 1. A write occurs during the overlap (t_{WP}) of low /CE1, high CE2 and low /WE. A write begins when /CE1 goes low, CE2 goes high and /WE goes low. A write ends at the earliest transition when /CE1 goes high, CE2 goes low and /WE goes high. The t_{WP} is measured from the beginning of the write to the end of write.
- 2. t_{CW} is measured from the /CE1 going low or CE2 going low to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. t_{WR} applied in case a write ends as /CE1 or /WE going high or CE2

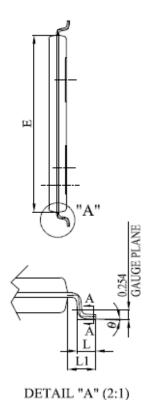
1M Words By 8 bit

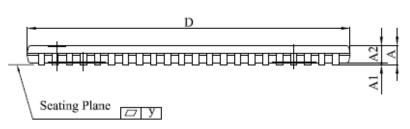
CS18LV82933

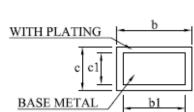
going low.

ORDER INFORMATION

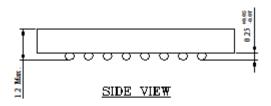

Note: Package material code "R" meet RoHS.


1M Words By 8 bit

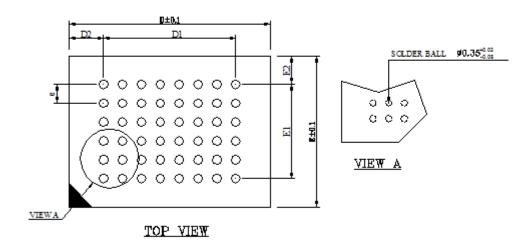

CS18LV82933


PACKAGE OUTLINE

44L TSOP2-400mil



SECTION A-A


Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.

UNIT	MBOL	A	A1	A2	b	b1	С	c1	D	Е	E1	e	L	L1	y	Θ
	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	1	0°
mm	Nom.	1.10	0.10	1.00	-	_	_	_	18.41	10.16	11.76	0.80	0.50	0.80	1	1
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	1	0°
inch	Nom.	0.0433	0.004	0.039	ı	ı	ı	_	0.725	0.400	0.463	0.0315	0.0197	0.0315	-	_
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°

48 ball TFBGA-6x8mm

BALL PITCH e=0.75									
D	E	N	Dl	El	D2	E2			
8.0	6.0	48	5.25	3.75	1.375	1.125			

NOTES

- 1. CONTROLLING DIMENSIONS ARE INMILLIMETERS.
- 2. PINH DOT MARKING BY LASER OR PAD PRINT.
 3. SYMBOL "N" IS THE NUMBER OF SOLDER BALLS.
- 4. TOLERANCES:
- LINEAR: X.X -±0.1 X.XX -±0.0
 - X.XX ± 0.05 X.XXX - ± 0.025