

512k Word By 16 bit

CS16LV82933

	Cover Sheet and Revision Status							
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明 (Change Description)	發行人 (Originator)				
1.0	-	Aug. 17, 2016	New issue	Hank Lin				
2.0	20200019	Dec. 29, 2020	Revise ICC (operating current)	Hank Lin				
			45ns- 30mA, 55ns- 30mA, 70ns- 20mA					

512k Word By 16 bit

CS16LV82933

PRODUCT DESCRIPTION	1
FEATURES	1
PRODUCT FAMILY	1
PIN CONFIGURATIONS	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	3
TRUTH TABLE	4
ABSOLUTE MAXIMUM RATINGS (1)	4
DC ELECTRICAL CHARACTERISTICS (TA = 0~+70 $^{\circ}$ C / -40 $^{\circ}$ C ~+85 $^{\circ}$ C, VCC = 3.0V)	5
OPERATING RANGE	5
CAPACITANCE $^{(1)}$ (TA = 25 $^{\circ}$ C, f =1.0 MHz)	6
DATA RETENTION CHARACTERISTICS (TA = $0 \sim 70^{\circ}$ C / -40° C $\sim 85^{\circ}$ C)	6
KEY TO SWITCHING WAVEFORMS	
AC TEST LOADS	8
AC ELECTRICAL CHARACTERISTICS (TA = $0 \sim 70^{\circ}$ C / -40° C $\sim 85^{\circ}$ C, VCC = 3.0V)	9
SWITCHING WAVEFORMS (READ CYCLE)	10
AC ELECTRICAL CHARACTERISTICS (TA = $0\sim70^{\circ}$ C / -40° C $\sim+85^{\circ}$ C, VCC = 3.0V)	11
SWITCHING WAVEFORMS (WRITE CYCLE)	12
ORDER INFORMATION	13
PACKAGE OUTLINE	14

512k Word By 16 bit

CS16LV82933

PRODUCT DESCRIPTION

The CS16LV82933 is a high performance, high speed, low power CMOS Static Random Access Memory organized as 524,288 words by 16 bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced 90 nm CMOS technology and circuit techniques provide both high speed and low power features with a Typical CMOS standby current of 4uA and maximum access time of 45/55/70ns in 3V operation. Easy memory expansion is provided by an active LOW chip enable1 (/CE1), active HIGH chip enable2 (CE2) for BGA product and active LOW output enable (/OE) and three-state output drivers. The CS16LV82933 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS16LV82933 is available in

FEATURES

Low operation voltage: 2.7 ~ 3.6V

JEDEC standard 48Ball TFBGA 6x8mm package.

Ultra low power consumption :

■ operating current: 30mA (Max.) @tAA=45ns

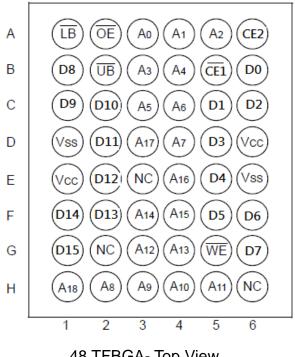
standby current : 4uA (Typ.)

Fast access time: 45/55/70ns (Max.)

Automatic power down when chip is deselected.

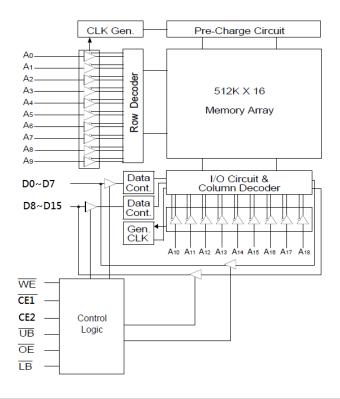
Three state outputs and TTL compatible, fully static operation

Data retention supply voltage as low as 1.5V.


PRODUCT FAMILY

Product Family	Operating Temp	V _{CC} . Range (V)	Speed (ns)	Standby Current (Typ.)	Package Type
CS16LV82933	0 ~ 70°C	2.7 ~ 3.6	45/55/70	4 uA	48 TFBGA
CS16LV82933	-40 ~ 85°C	2.1 ~ 3.0	40/00/70	(Vcc = 3.0V)	40 IFBGA

512k Word By 16 bit


CS16LV82933

PIN CONFIGURATIONS

48 TFBGA- Top View

FUNCTIONAL BLOCK DIAGRAM

512k Word By 16 bit

CS16LV82933

PIN DESCRIPTIONS

Name	Туре	Function
A0 ~ A18	Input	19 address inputs for selecting one of the 524,288 x 16 bit words in the RAM
/CE1 & CE2	Input	/CE1 is active LOW and CE2 is active high. Chip enable must be active when data read from or write to the device. If chip enable is not active, the device is deselected and in a standby power mode. The DQ pins will be in high impedance state when the device is deselected.
/WE	Input	The Write enable input is active LOW. It controls read and write operations. With the chip selected, when /WE is HIGH and /OE is LOW, output data will be present on the DQ pins, when /WE is LOW, the data present on the DQ pins will be written into the selected memory location.
/OE	Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when /OE is inactive.
/LB and /UB	Input	Lower byte and upper byte data input/output control pins.
DQ0~DQ15 I/O These 16 bi-directional ports are used to reach data into the RAM.		These 16 bi-directional ports are used to read data from or write data into the RAM.
Vcc	Power	Power Supply
Vss	Power	Ground

512k Word By 16 bit

CS16LV82933

TRUTH TABLE

MODE	/CE1	CE2	/WE	/OE	/LB	/UB	DQ0~7	DQ8~15	V _{CC} Current
Fully	I	Х	Х	Х	Х	Х	High Z	High Z	Iccsb,
Standby	Х	L	X	Х	Х	Х	High Z	High Z	Iccsb,
Output Disabled	L	Н	Н	Н	Х	X	High Z	High Z	Icc
	L			L	L	L	Dout	Dout	Icc
Read		L H	Н		Н	L	High Z	D оит	Icc
					L	Η	D оит	High Z	Icc
					L	L	Din	Din	Icc
Write	L	Н	L	X	Н	L	High Z	D _{IN}	Icc
					L	Н	DIN	High-Z	Icc

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
VIN , VOUT	Voltage on Any Pin Relative to Vss	-0.5 to Vcc+0.5V	V
Vcc	Voltage on Vcc supply Relative to Vss	-0.5 to 4.6	V
T _A	Operating Temperature	-40 to +85	οС
PD	Power Dissipation	1.0	W

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

512k Word By 16 bit

CS16LV82933

DC ELECTRICAL CHARACTERISTICS (TA = 0~+70°C /-40°C~+85°C, VCC = 3.0V)

Parameter Name	Parameter	Test Conduction		MIN	TYP (1)	MAX	Unit
VıL	Guaranteed Input Low Voltage (2)	Vcc=3V		-0.3(2)		0.8	V
Vıн	Guaranteed Input High Voltage (2)	Vcc=3V		2.2		V _{CC} + 0.3 ⁽²⁾	V
I _{IL}	Input Leakage Current	V _{CC} =MAX, V _{IN} =0 to V	/cc	-1		1	uA
loL	Output Leakage Current	/CE1=VIH or CE2=VIL or /OE=VIH or /WE=VIL		-1		1	uA
Vol	Output Low Voltage	Vcc=MAX, IoL = 2 mA				0.4	V
Voн	Output High Voltage	Vcc=MIN, IoH = -1m	A	2.4			V
	Operating Dower	/CE1-\/ 0m/\	45ns			30	
Icc	Operating Power Supply Current	/CE1= V_{IL} , I_{DQ} =0mA, F = F_{MAX} ⁽³⁾	55ns			30	mΑ
	Supply Current	Г=ГМАХ(**/	70ns			20	
Іссѕв	Standby Supply -TTL	/CE1=V _{IH} , I _{DQ} =0mA,				0.5	mA
Iccsb1	Standby	/CE1≧Vcc-0.2V, VIN≧Vcc-0.2V			4	20	uA
	Current-CMOS	or V _{IN} ≦0.2V					

^{1.} Typical characteristics are at $T_A = 25 \, \text{°C}$

Undershoot:-2.0V in case of pulse width ≤20ns

Overshoot and undershoot are sampled, not 100% tested.

3. $Fmax = 1/t_{RC}$

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0~70°C	2.7V ~ 3.6V
Industrial	-40~85°C	2.7V ~ 3.6V

^{2.} Overshoot: Vcc+2.0V in case of pulse width≤20ns,

512k Word By 16 bit

CS16LV82933

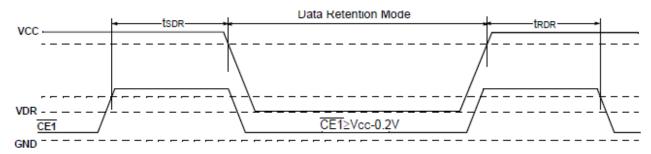
CAPACITANCE $^{(1)}$ (TA = 25°C, f =1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
CIN	Input Capacitance	V _{IN} =0V	6	pF
CDQ	Input/output Capacitance	V _{I/O} =0V	8	pF

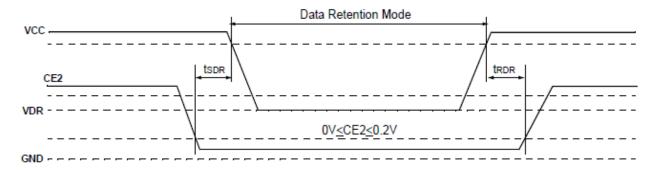
^{1.} This parameter is guaranteed and not 100% tested.

DATA RETENTION CHARACTERISTICS (TA = 0~70°C /-40°C~85°C)

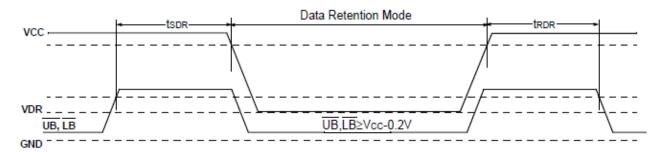
Parameter Name	Parameter	Test Conduction	MIN	TYP (1)	MAX	Unit
\\	Ver for Data Datastian	/CE1≧Vcc-0.2V, Vın≧	4 5			\ \ \ \ \
Vdr	Vcc for Data Retention	Vcc-0.2V or Vı <u>n≦</u> 0.2V	1.5			V
		V _{CC} =1.5V,V _{IN} ≧V _{CC} -0.2V or				
		V _{IN} ≦0.2V				
	Data Retention Current	1) CE2≦0.2V, or				
ICCDR		Data Retention Current 2) CE2≧V _{CC} -0.2V, /CE1≧		4	20	uA
		Vcc-0.2V, or				
	3) CE2≧V _{CC} -0.2V, /CE1≦					
		0.2V, /UB=/LB≧V _{CC} -0.2V				
tsdr	Chip Deselect to Data		0			ns
	Retention Time	See Retention Waveform	1			
t _{RDR}	Operation Recovery Time		t _{RC} (2)			ns


^{1.} V_{CC} = 3.0V, T_A = +25 $^{\circ}$ C

^{2.} t_{RC} (2) = Read Cycle Time.


512k Word By 16 bit

CS16LV82933


LOW Vcc DATA RETENTION WAVEFORM (1) (/CE1 Controlled)

LOW V_{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)

LOW V_{CC} DATA RETENTION WAVEFORM (3) (/UB, /LB Controlled)

512k Word By 16 bit

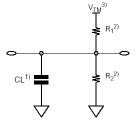
CS16LV82933

KEY TO SWITCHING WAVEFORMS

WAVEFORMS	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
	DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
$\longrightarrow \longrightarrow \longleftarrow$	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

AC TEST LOADS

Input Pulse Level : 0.4 to 2.4V Input Rise and Fall Time : 5ns


Input and Output reference Voltage: 1.5V Output Load (See right): CL = 100pF+ 1 TTL

 $CL^{1)} = 30pF + 1 TTL$

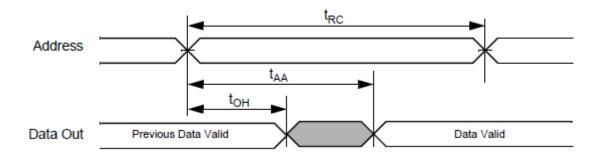
1. Including scope and Jig capacitance

2. R₁=3070 ohm, R₂=3150 ohm

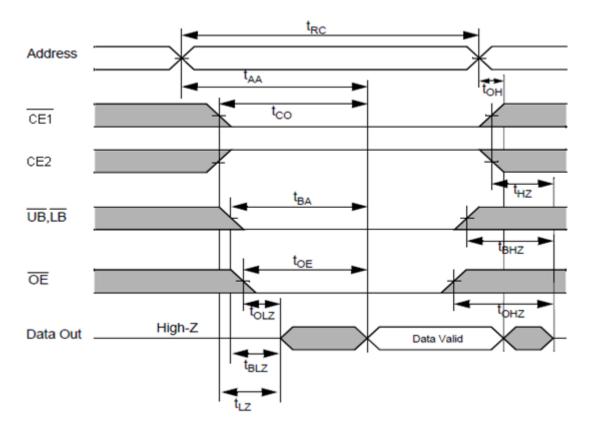
3. V_{TM}=2.8V

512k Word By 16 bit

CS16LV82933


AC ELECTRICAL CHARACTERISTICS (TA = 0~70% / -40%~85%, VCC = 3.0V)

< READ CYCLE >


JEDEC Parameter			45ns		55ns		70ns		
Name	Name	Description	Min	Max	Min	Max	Min	Max	Unit
tax	trc	Read Cycle Time	45		55		70		ns
tavqv	t AA	Address Access Time		45		55		70	ns
t _{ELQV}	tco	Chip Select Access Time (/CE1)	45			55		70	ns
tва	t BA	Data Byte Control Access Time (/LB, /UB)		45		55		70	ns
tGLQV	toe	Output Enable to Output Valid		22		25		35	ns
t _{ELQX}	t _{LZ}	Chip Select to Output Low Z (/CE1)	10		10		10		ns
t _{BE}	tвLz	Data Byte Control to Output Low Z (/LB, /UB)	5		5		5		ns
tGLQX	tolz	Output Enable to Output in Low Z	5		5		5		ns
t _{EHQZ}	t _{HZ}	Chip Deselect to Output in High Z (/CE1)		18		20		25	ns
tBDO	tвнz	Data Byte Control to Output High Z (/LB, /UB)		18		20		25	ns
tgнqz	tонz	Output Disable to Output in High Z		18		20		25	ns
taxox	tон	Out Disable to Address Change	10		10		10		ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE 1. (Address Controlled, /CE1=/OE=VIL, CE2=/WE=VIH)

READ CYCLE 2. (/WE=VIH)

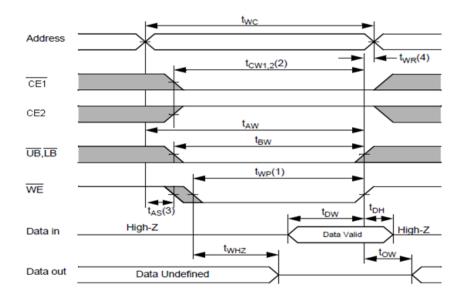
- 1. t_{HZ} and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device interconnection.

512k Word By 16 bit

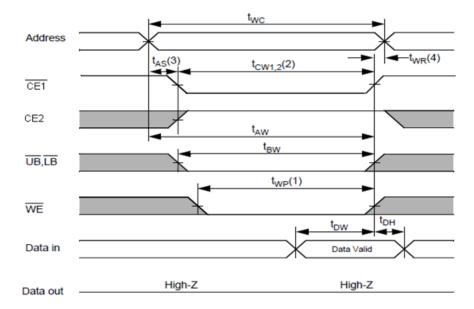
CS16LV82933

AC ELECTRICAL CHARACTERISTICS (TA = 0~70°C /-40°C~+85°C, VCC = 3.0V)

< WRITE CYCLE >

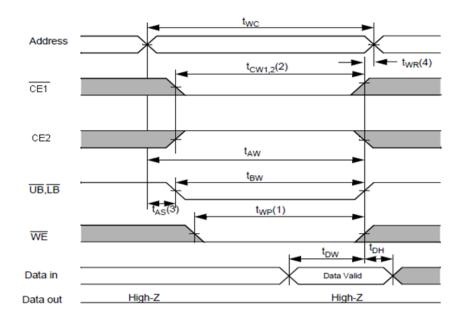

JEDEC	Parameter	Description	45ns		55ns		70ns		Lloit
Name Name		Description	Min	Max	Min	Max	Min	Max	Unit
t _{AVAX}	twc	Write Cycle Time			55		70		ns
t _{E1LWH}	tcw	Chip Select to End of Write			45		60		ns
t _{AVWL}	tas	Address Setup Time			0		0		ns
tavwh	taw	Address Valid to End of Write	35		45		60		ns
twlwh	twp	Write Pulse Width			45		55		ns
twhax	twR	Write Recovery Time (/CE1, /WE)	0		0		0		ns
t _{BW}	t _{BW}	Data Byte Control to End of Write(/LB, /UB)	35		45		60		ns
twLQZ	twnz	Write to Output in High Z		18		20		25	ns
t _{DVWH}	t _{DW}	Data to Write Time Overlap	25		25		30		ns
twhox	tон	Data Hold from Write Time	0		0		0		ns
twhox	tow	End of Write to Output Active	5		5		5		ns

512k Word By 16 bit

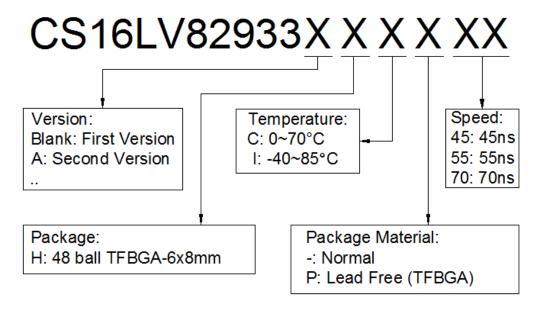

CS16LV82933

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1. (/WE Controlled)

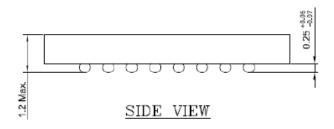

WRITE CYCLE 2. (/CE1 Controlled)

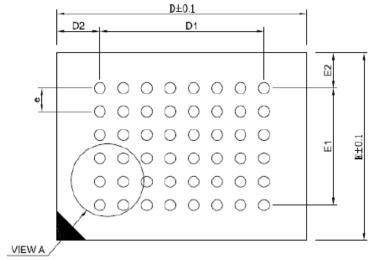
512k Word By 16 bit

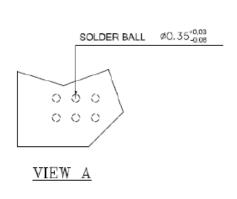

CS16LV82933

WRITE CYCLE 3. (/UB, /LB Controlled)

- 1. A write occurs during the overlap (t_{WP}) of low /CE1, high CE2and low /WE. A write begins when /CE1 goes low, CE2 goes high and /WE goes low with asserting /UB and /LB for double byte operation. A write ends at the earliest transition when /CE1 goes high, CE2 goes low and /WE goes high. The t_{WP} is measured from the beginning of the write to the end of write.
- 2. t_{CW} is measured from the /CE1 going low or CE2 going high to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. TWR applied in case a write ends as /CE1 going high, CE2 going low or /WE going high.


ORDER INFORMATION


Package material code "P" & "R" comply with RoHS.


PACKAGE OUTLINE

48 ball TFBGA-6x8mm

BALL PITCH e = 0.75										
O	Е	N	D1	E1	D2	E2				
8.0	6.0	48	5.25	3.75	1.375	1.125				

TOP VIEW

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3, SYMBOL "N" IS THE NUMBER OF SOLDER BALLS,
- 4. TOLERANCES:

LINEAR : $X.X = \pm 0.1$ $X.XX = \pm 0.05$

X.XXX = ± 0.025