
	Cover Sheet and Revision Status					
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明 (Change Description)	發行人 (Originator)		
1.0	20230012	Jul.14 -2023	New issue	Hank Lin		

General Description	1
Product Performance	1
Features	2
Function Block Diagram Figure 1: Function Block Diagram	
Package Pin Configuration Figure 2: Pinout	
Pin Descriptions	3
Table 1: Pin Description	3
Power On/Off Sequence: 1.8V Device	
Figure 3 : Power-up/down Behavior : 1.8V Device	
Table 2: Power Up/Down Timing – 1.8V Device	
Power On/Off Sequence: 3.3V Device Figure 3 : Power-up/down Behavior : 3.3V Device	
Table 3 : Power Up/Down Timing – 3.3V Device	
Memory Organization	7
Table 4: Memory Map	7
Table 5 : Augmented 256-Byte Area Map	7
Table 6 : Register Address	8
Instruction Command Set	
Table 7: Control Instruction Set	8
Table 8 : Read Register Instruction Set	9
Table 9 : Write Register Instruction Set	9
Table 10 : Read Memory Array Instruction Set	10
Table 11 : Write Memory Array Instruction Set	10
Table 12 : Augmented 256-Byte Area Instruction Set	11
Register Description	11
Table 13 : Status Register-Data Protection	12
Table 14 : Write Protection Modes	12

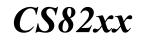

Table 15 : Block Protection Address Range Selection	13
Table 16 : Augmented 256-Byte Area Protection Register – Read and Write	
Table 17 : Configuration Register 1 – Read and Write	
Table 18 : Configuration Register 2 – Read and Write	15
Table 19 : Read Latency Cycles vs. Maximum Frequency (Memory Area)	16
Table 20 : Read Latency Cycles vs. Maximum Frequency (Augmented 256-Byte Area)	16
Table 21 : Latency Cycles vs. Maximum Frequency (Read Any Register Instruction)	16
Table 22 : Configuration Register 3 – Read and Write	16
Table 23 : Configuration Register 4 – Read and Write	17
Table 24 : Device Identification Register – Read Only	18
Table 25 : Serial Number Register – Read and Write	18
Table 26 : Unique ID Register – Read Only	19
Device Operation	19
General Operation	19
Figure 5 : SPI Clock Modes	19
SPI Interface Modes	19
Table 27 : Pin Assignment / Interface Modes	20
Figure 6 : Location of MSB and LSB	16
Figure 7 : MSB and LSB in DSPI and QSPI	16
Figure 8 : Description of SDR Instruction Type	16
Figure 9 : Description of DDR Instruction Type	16
Figure 10 : Description of command followed by Address (SSIP mode)	17
Figure 11 : Description of Read Operation (SSIP mode)	17
Figure12 : Description of Write Operation (SSPI mode)	18
Figure 13 : Description of Read Operation with XIP (SSIP mode)	18
Figure 14 : Description of Continuing Read Operation (SSIP mode)	19
Figure 15 : Description of Continuing Write Operation (SSIP mode)	19
Figure 16 : Entering Deep Power Down Mode (SSIP mode)	20
Figure 17 : Exit Deep Power Down Mode by CS	20
Figure 18 : Exit Deep Power Down Mode by SPI Command	21
Figure 19 : Software Reset Timing	21
Figure 20 : JEDEC Reset Operation Timing	22


Table 28 : JEDEC Reset Operation & Timing : 1.8V Device	22
Table29 : JEDEC Reset Operation & Timing : 3.3V Device	22
Electrical Specifications	23
Table 30 : Absolute Maximum Ratings	23
Table 31 : Endurance, Retention and Magnetic Immunity	23
Table 32 : Recommended Operating Conditions	24
Table 33 : Pin Capacitance	
Table 34 : AC Test Conditions	
Table 35 : DC Characteristics : 3.3V Device	
Table 36 : DC Characteristics : 1.8V Device	
Figure 21 : Synchronous Input Timing (SDR/DDR)	
Figure 22 : Synchronous Data Output Timing (SDR/DDR)	
Figure 23 : WP Operation Timing	
Figure 24 : CS High Timing	28
Table 37 : CS High Time after Write Instruction : SDR=108MHz/DDR=54MHz	28
Table 38 : CS High Time after Write Instruction : SDR=54MHz/DDR=27MHz	28
Table 39 : CS High Time after Register/Augmented 256-Byte Area Write Instruction	29
Table 40 : AC Timing Parameter	29
Table 41 : Thermal Resistance	
Timing Description of Instruction Sets	
Figure 25 : Timing Description of 1-0-0 Instruction Type	
Figure 26 : Timing Description of 1-0-1 Instruction Type (Read)	
Figure 27 : Timing Description of 1-0-1 Instruction Type (Write)	
Figure 28 : Timing Description of 1-1-1 Instruction Type (Read without XIP)	
Figure 29 : Timing Description of 1-1-1 Instruction Type (Write)	
Figure 30 : Timing Description of 1-1-1 Augmented 256-byte Area (Read)	
Figure 31 : Timing Description of 1-1-1 Augmented 256-byte Area (Write)	32

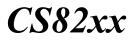


Figure 32 : Timing Description of 1-1-1 Any Register Instruction Type (Read)	32
Figure 33 : Timing Description of 1-1-1 Any Register Instruction Type (Write)	33
Figure 34 : Timing Description of 1-1-1 Instruction Type (Read with XIP)	33
Figure 35 : Timing Description of 1-1-1 Instruction Type (Write with XIP)	33
Figure 36 : Timing Description of 1-1-2 Instruction Type (Read with XIP)	34
Figure 37 : Timing Description of 1-1-2 Instruction Type (Write with XIP)	34
Figure 38 : Timing Description of 1-2-2 Instruction Type (Read with XIP)	34
Figure 39 : Timing Description of 1-2-2 Instruction Type (Write with XIP)	35
Figure 40 : Timing Description of 1-1-4 Instruction Type (Read with XIP)	35
Figure 41 : Timing Description of 1-1-4 Instruction Type (Write with XIP)	35
Figure 42 : Timing Description of 1-4-4 Instruction Type (Read with XIP)	36
Figure 43 : Timing Description of 1-4-4 Instruction Type (Write with XIP)	36
Figure 44 : Timing Description of 1-1-1 DDR Instruction Type (Read with XIP)	37
Figure 45 : Timing Description of 1-1-1 DDR Instruction Type (Write with XIP)	37
Figure 46 : Timing Description of 1-1-2 DDR Instruction Type (Read with XIP)	37
Figure 47 : Timing Description of 1-1-2 DDR Instruction Type (Write with XIP)	38
Figure 48 : Timing Description of 1-2-2 DDR Instruction Type (Read with XIP)	38
Figure 49 : Timing Description of 1-2-2 DDR Instruction Type (Write with XIP)	38
Figure 50 : Timing Description of 1-1-4 DDR Instruction Type (Read with XIP)	39
Figure 51 : Timing Description of 1-1-4 DDR Instruction Type (Write with XIP)	39
Figure 52 : Timing Description of 1-4-4 DDR Instruction Type (Read with XIP)	40
Figure 53 : Timing Description of 1-4-4 DDR Instruction Type (Write with XIP)	40
Figure 54 : Timing Description of 2-0-0 Instruction Type	41
Figure 55 : Timing Description of 2-0-2 Instruction Type (Read)	41
Figure 56 : Timing Description of 2-0-2 Instruction Type (Write)	41
Figure 57 : Timing Description of 2-2-2 Any Register Instruction Type (Read)	42
Figure 58 : Timing Description of 2-2-2 Any Register Instruction Type (Write)	42
Figure 59 : Timing Description of 2-2-2 Instruction Type (Read with XIP)	42
Figure 60 : Timing Description of 2-2-2 Instruction Type (Write with XIP)	43
Figure 61 : Timing Description of 2-2-2 DDR Instruction Type (Read with XIP)	43
Figure 62 : Timing Description of 2-2-2 DDR Instruction Type (Write with XIP)	43
Figure 63 : Timing Description of 4-0-0 Instruction Type	44
Figure 64 : Timing Description of 4-0-4 Instruction Type (Read)	44
Figure 65 : Timing Description of 4-0-4 Instruction Type (Write)	45
Figure 66 : Timing Description of 4-4-4 Any Register Instruction Type (Read)	45
Figure 67 : Timing Description of 4-4-4 Any Register Instruction Type (Write)	46
Figure 68 : Timing Description of 4-4-4 Instruction Type (Read with XIP)	46

Figure 69 : Timing Description of 4-4-4 Instruction Type (Write with XIP)	47
Figure 70 : Timing Description of 4-4-4 DDR Instruction Type (Read with XIP)	47
Figure 71 : Timing Description of 4-4-4 DDR Instruction Type (Write with XIP)	48
Ordering Information	48
Package Dimension	
8L WSON 6x5mm	49
8L SOP – 150mil	50

General Description

The device is a Spin-Transfer-Torque Magneto-resistive Random Access Memory (STT-MRAM). It features a SPI bus interface, XIP(execute-in-place) functionality, and hardware/software-based data protection mechanisms. SPI (Serial Peripheral Interface) is a synchronous serial communication interface with command, address and data signals.

It requires fewer pin counts than parallel interface and is easy to be configured on the system. The device is offered in density ranging from 1Mbit to 16Mbit. The device can replace Flash, FRAM or (nv)SRAM with same functionality and non-volatility.

The device provides various SPI modes to allow options for bandwidth expansion. SSPI (Single SPI) modes has single(1) pin for command signals. And user can select an option for how many pins to be allocated to address and data signals among 1 pin, 2 pins or 4 pins. DSPI (Dual SPI) modes provides dual(2) pins for command, address and data signals. QSPI (Quad SPI) modes provides Quad(4) pins for command, address and data signals.

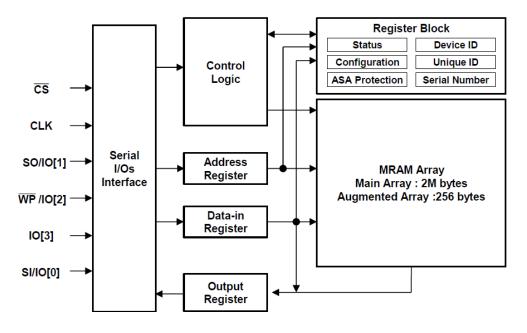
The device has nonvolatile register bits – status register, configuration register, serial number register, augmented 256 bytes and protection register for augment bytes. These register bits are required to be set at least once on power-up after high temperature solder reflow process.

The device is available in small footprint 8-pad WSON and 8-pin SOIC packages. These packages are compatible with similar low-power volatile and non-volatile products.

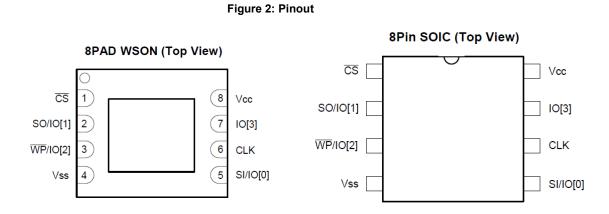
Product Performance

Operation	Typical	Unito	
Operation	1.8V	3.3V	Units
Frequency(SDR)	108 (MHz	
Frequency(DDR)	54 (N	MHz	
Standby Current	280	330	μA
Deep Power Down Current	25	80	μA
Active Read Current (4-4-4) SDR @108MHz	8	11	mA
Active Write Current (4-4-4) SDR @108MHz	21	24	mA

Features


- Supports Serial Peripheral Interface with Mode 0 and Mode 3 - Single SPI (1-1-1, 1-1-2, 1-2-2, 1-1-4, 1-4-4) - Dual SPI (2-2-2) - Quad SPI (4-4-4)
- **Operating Frequency**
 - Single Data Rates (SDR) : 108MHz -
 - Double Data Rates (DDR) : 54MHz -
- Supports XIP for read and write operations
- Fast write time and single byte writable
- Data protection
 - WP pin write protection -
 - Block lock protection
- Nonvolatile status and configuration registers
- Identification
 - 64-bit unique ID _
 - 64-bit serial number user writable
- Augmented 256-byte nonvolatile-area
 - _ 8L WSON (5.0mm x 6.0mm)
 - 8L SOIC (150mil)

- Read and write with user-protection
- Deep power down for low power
- Supports JEDEC reset
- Memory cell : STT-MRAM
- Density 1Mb, 2Mb, 4Mb, 8Mb and 16Mb •
- Data Integrity : No external ECC required
- Data Endurance
 - Unlimited read cycle
 - 10¹⁴ write cycles _
- **Data Retention** •
 - 10 years at 85°C
- Single Power Supply Operation
- **Operating Temperature Range**
 - Commercial Temperature : 0°C to 70°C
 - Industrial Temperature : -40°C to 85°C
- **RoHS** compliant packages

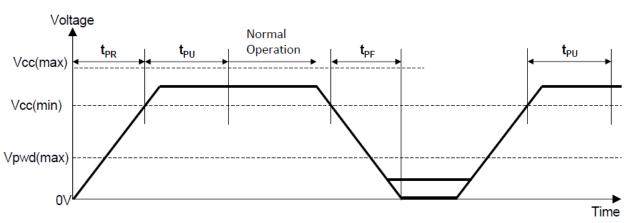

1Mb ~ 16Mb SPI MRAM

Function Block Diagram

Figure 1: Function Block Diagram

Package Pin Configuration

Pin Descriptions


Table 1: Pin Description

Pin	Туре	Description		
CS		When CS is driven Low, read or write operation are initiated. When CS is driven High, the device enters standby mode, and all other input pins are ignored, and the output pins are tri- stated. CS should be High at power-up to prevent abnormal write operation. This pin does not have internal pullup resistor.		
CLK		 In SDR(single data rate) mode, command, address and data inputs are latched on the rising edge of the clock. Data is output on the falling edge of the clock. In DDR(double data rate) mode command is latched on the rising edge of the clock and address and data inputs are latched on the rising and falling edges of the clock. Similarly, Data is output on both edges of the clock. The two SPI clock modes are supported as follows. SPI Mode 0 : SDR and DDR SPI Mode 3 : SDR only 		
WP /IO[2]	Input /Bidirectional	Write protects the status register in conjunction with the WREN bit (SR[1]) of the status register. The writing of status register is protected in related with WP and WPEN. See "Table 14 : Write Protection Modes". This pin does not have internal pullups, it cannot be left floating and must be driven. WP is valid in Single SPI and Dual SPI mode. IO[2] : The bidirectional I/O in Quad SPI mode.		
IO[3]	Bidirectional	IO[3] : The bidirectional I/O in Quad SPI modes.		
SI/IO[0]	Input /Bidirectional	SI : The serial input in Single SPI mode. IO[0] : The bidirectional I/O in Dual and Quad SPI modes		
SO/IO[1]		SO : The serial data output in Single SPI mode. IO[1] : The bidirectional in Dual and Quad SPI modes.		
Vcc	Supply	Power pin		
Vss	Supply	Ground pin		

Power On/Off Sequence: 1.8V Device

- When power-up, power-down or power-loss, CS must follow Vcc to provide data protection.
- It is recommended that CS must follow Vcc when Vcc is below Vcc(minimum) and during tPU.
- A 10KΩ pull-up resistor between Vcc and CS pin is recommended.
- Normal operation must start after tPU.

Figure 3 : Power-up/down Behavior : 1.8V Device

CS82xx

Table 2: Power	Up/Down	Timina – 1	8V Device
	Op/DOwn	runnig i	.00 DCVICC

Parameter	Symbol	Min	Max	Units
Vcc Range	Vcc	1.71	1.98	V
Vcc rising time	tPR ⁽¹⁾	30	-	μs/V
Vcc falling time	tPF ⁽¹⁾	30	-	μs/V
Vcc(min) to CS Low (first instruction) time	tPU(¹⁾	2.0	-	ms
Vcc needed to below Vpwd for ensuring initialization will occur	VPWD ⁽¹⁾	-	0.8	V
Software Reset Time	tSRSE ⁽¹⁾	2.0	-	ms

Notes:

1: These parameters are guaranteed by characterization; not tested in production.

Power On/Off Sequence: 3.3V Device

- When power-up, power-down or power-loss, CS must follow Vcc to provide data protection.
- It is recommended that CS must follow Vcc when Vcc is below Vcc (minimum) and during tPU.
- A 10K Ω pull-up resistor between Vcc and \overline{CS} pin is recommended.
- Normal operation must start after tPU.

Figure 3 : Power-up/down Behavior : 3.3V Device

CS82xx

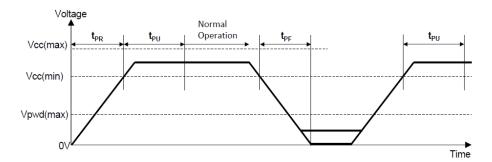


Table 3 : Power Up/Down Timing – 3.3V Device

Parameter	Symbol	Min	Max	Units
Vcc Range	Vcc	2.7	3.6	v
Vcc rising time	tPR ⁽¹⁾	30	-	μs/V
Vcc falling time	tPF ⁽¹⁾	30	-	μs/V
Vcc(min) to CS Low (first instruction) time	tPU ⁽¹⁾	2.0	-	ms
Vcc needed to below Vpwd for ensuring initialization will occur	VPWD ⁽¹⁾	-	1.6	V

Notes:

1: These parameters are guaranteed by characterization; not tested in production.

Memory Organization

Memory Map

Table 4: Memory Map

Density	Address Range	24-bit Ad	dress [23:0]
1Mb	000000h – 01FFFFh	[23:17] – Logic '0'	[16:0] – Addressable
2Mb	000000h – 03FFFFh	[23:18] – Logic '0'	[17:0] – Addressable
4Mb	000000h – 07FFFFh	[23:19] – Logic '0'	[18:0] – Addressable
8Mb	000000h – 0FFFFFh	[23:20] – Logic '0'	[19:0] – Addressable
16Mb	000000h – 1FFFFFh	[23:21] – Logic '0'	[20:0] – Addressable

Augmented 256-Byte Area Map

Table 5 : Augmented 256-Byte Area Map

Density	Address Range	24-bit Address [23:0]					
1Mb~16Mb	000000h – 0000FFh1	[23:8] – Logic '0'	[7:0] - Addressable				

Notes:

1Mb ~ 16Mb SPI MRAM

1: The augmented 256-byte area is divided into 8 individually readable and writeable sections (32 bytes per section). After an individual section is written,

it can be written protected for each section to prevent further writing.

Register Address Map

The device provides the register read/write instructions to read and write data of each register. In addition, the device provides the register read and/or write function based on addresses by RDAR(65h) and WRAR(71h) commands.

Register Name	Address
Status Register	0x00000h
Configuration Register 1	0x00002h
Configuration Register 2	0x00003h
Configuration Register 3	0x000004h
Configuration Register 4	0x00005h
Device Identification Register	0x000030h
Unique Identification Register	0x000040h
Serial Number Register	0x000080h

Table 6 : Register Address

Notes:

1: Register address space is different from the memory array and augmented 256-byte area.

Instruction Command Set

Instruction Name	Command	Opcode	Interface Type	XIP	Data	Data	Latency	Max.
		(Hex)	(CMD-ADDR-Data)		Rate	Bytes	Cycles	Frequency
No operation	NOOP	00	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Write Enable	WREN	06	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Write Disable	WRDI	04	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Enable DSPI	DPIE	37	1-0-0, 4-0-0		SDR			108MHz
Enable QSPI	QPIE	38	1-0-0, 2-0-0		SDR			108MHz
Enable SSPI	SPIE	FF	2-0-0, 4-0-0		SDR			108MHz
Enter Deep Power Down	DPDE	B9	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Exit Deep Power Down	DPDX	AB	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Software Reset Enable	SRTE	66	1-0-0, 2-0-0, 4-0-0		SDR			108MHz
Software Reset*	SRST	99	1-0-0, 2-0-0, 4-0-0		SDR			108MHz

Table 7: Control Instruction Set

1Mb ~ 16Mb SPI MRAM

Notes:

1: Software Reset (SRST) requires Software Reset Enable (SRTE) implemented in advance.

2: SSPI mode is enabled after power-on, software reset or JEDEC reset.

Table 8 :	Read	Register	Instruction Set

Instruction Name	Command	Opcode		XIP	Data Poto	Data	Latency	
		(Hex)	(CMD-ADDR-Data)		Rate	Bytes	Cycles	Frequency
Read Status Register	RDSR	05	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Configuration Register 1	RDC1	35	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Configuration Register 2	RDC2	3F	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Configuration Register 3	RDC3	44	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Configuration Register 4	RDC4	45	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Configuration Register 1, 2, 3, 4	RDCX	46	1-0-1, 2-0-2, 4-0-4		SDR	4		108MHz
Read Device ID	RDID	9F	1-0-1, 2-0-2, 4-0-4		SDR	4		108MHz
Read Unique ID	RUID	4C	1-0-1, 2-0-2, 4-0-4		SDR	8		54MHz
Read Serial Number Register	RDSN	C3	1-0-1, 2-0-2, 4-0-4		SDR	8		108MHz
Read Augmented 256-byte Protection Register	RDAP	14	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Read Any Register - Address Based	RDAR	65	1-1-1, 2-2-2, 4-4-4		SDR	1,4,8	0	108MHz

Notes:

Registers do not wrap data during reads. Reading beyond the specified number of bytes will yield indeterminate data.

Table	9:	Write	Reaister	Instruction	Set
i abio	۰.		riegieter	moduom	000

Instruction Name	Command	Opcode	Interface Type	XIP	Data	Data	Latency	Max.
Instruction Name	Command	(Hex)	(CMD-ADDR-Data)		Rate	Bytes	Cycles	Frequency
Write Status Register	WRSR	01	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Write Configuration Registers 1,	WRCX	87	1-0-1, 2-0-2, 4-0-4		SDR	4		108MHz
2, 3, 4	WINGX	01	101,202,101					
Write Serial Number Register	WRSN	C2	1-0-1, 2-0-2, 4-0-4		SDR	8		108MHz
Write Augmented 256-byte	WRAP	1A	1-0-1, 2-0-2, 4-0-4		SDR	1		108MHz
Protection Register	WINAF		1-0-1, 2-0-2, 4-0-4		SDR	I		
Write Any Register - Address	WRAR	71	1-1-1, 2-2-2, 4-4-4		SDR	1,8		108MHz
Based		/ 1	1-1-1, 2-2-2, 4-4-4		JUK	1,0		

Notes:

1Mb ~ 16Mb SPI MRAM

1. Write Enable (WREN) should be implemented in advance of Write Register Instruction set regardless of CR4[1:0] setting.

2. The WREN prerequisite for write operation of memory array and augmented 256-byte area is described in Configuration Register 4.

Instruction Name	Command	Opcode (Hex)	Interface Type (CMD-ADDR- Data)	XIP			Latency Cycles	Max. Frequency
Read Memory Array - SDR	READ	03	1-1-1		SDR	1→∞		54MHz
Fast Read Memory Array - SDR	RDFT	0B	1-1-1, 2-2-2, 4-4- 4	0	SDR	1→∞	0	108MHz
Fast Read Memory Array - DDR	DRFR	0D	1-1-1, 2-2-2, 4-4- 4	0	DDR	1→∞	0	54MHz
Read Dual Output Memory Array - SDR	RDDO	3B	1-1-2	0	SDR	1 → ∞	0	108MHz
Read Dual Output Memory Array - DDR	DRDO	3D	1-1-2	0	DDR	1→∞	0	54MHz
Read Quad Output Memory Array - SDR	RDQO	6B	1-1-4	0	SDR	1→∞	0	108MHz
Read Quad Output Memory Array – DDR	DRQO	6D	1-1-4	0	DDR	1→∞	0	54MHz
Read Dual I/O Memory Read - SDR	RDDI	BB	1-2-2	0	SDR	1→∞	0	108MHz
Read Dual I/O Memory Read - DDR	DRDI	BD	1-2-2	0	DDR	1→∞	0	54MHz
Read Quad I/O Memory Read - SDR	RDQI	EB	1-4-4	0	SDR	1→∞	0	108MHz
Read Quad I/O Memory Read - DDR	DRQI	ED	1-4-4	0	DDR	1→∞	0	54MHz

Table 10 : Read Memory Array Instruction Set

Notes:

1: Read Instruction must include Latency cycles to meet operating frequency.

2: Latency is configurable through Configuration Register 2 (CR2[3:0]) and frequency dependent.

Required latency is described in Configuration Register 2.

Instruction Name	Command	Opcode (Hex)	Interface Type (CMD-ADDR- Data)	XIP			Latency Cycles	Max. Frequency
Write Memory Array - SDR	WRTE	02	1-1-1		SDR	1→∞		108MHz
Fast Write Memory Array - SDR	WRFT	DA	1-1-1, 2-2-2, 4-4-4	0	SDR	1→∞		108MHz
Fast Write Memory Array - DDR	DRFW	DE	1-1-1, 2-2-2, 4-4-4	0	DDR	1→∞		54MHz

Table 11 : Write Memory Array Instruction Set

1Mb ~ 16Mb SPI MRAM

Write Dual Input Memory Array-	WDUI	A2	1-1-2	0	SDR	1→∞	108MHz
SDR							
Write Dual Input Memory Array– DDR	DWUI	A4	1-1-2	0	DDR	1 → ∞	54MHz
Write Quad Input Memory Array- SDR	WQDI	32	1-1-4	0	SDR	1→∞	108MHz
Write Quad Input Memory Array- DDR	DWQI	31	1-1-4	0	DDR	1→∞	54MHz
Write Dual I/O Memory Array - SDR	WDIO	A1	1-2-2	0	SDR	1→∞	108MHz
Write Dual I/O Memory Array -DDR	DWIO	A3	1-2-2	ο	DDR	1→∞	54MHz
Write Quad I/O Memory Array - SDR	WQIO	D2	1-4-4	ο	SDR	1→∞	108MHz
Write Quad I/O Memory Array - DDR	DWQO	D1	1-4-4	0	DDR	1→∞	54MHz

Notes:

1: Write Enable (WREN) for array writing is configurable (Configuration Register 4 – CR4[1:0])

Instruction Name	Command	Opcode (Hex)	Interface Type (CMD-ADDR-Data)	XIP	Data Rate		Latency Cycles	Max. Frequency
Read Augmented 256-Byte Area - SDR	RDAS	4B	1-1-1		SDR	1→ 256	0	108MHz
Write Augmented 256-Byte Area - SDR	WRAS	42	1-1-1		SDR	1→ 256		108MHz

Table 12 : Augmented 256-Byte Area Instruction Set

Notes:

1: The address bits ADDR[23:8] must be Logic '0' for this Instruction.

1: Write Enable (WREN) for array writing is configurable (Configuration Register 4 – CR4[1:0])

Register Description

Status Register / Device Protection Register

The device offers both hardware and software-based data protection schemes. Hardware protection is through WP pin. Software protection is controlled by configuration bits in the Status register. Both schemes inhibit writing to the registers and memory array. Status Register contains options for enabling/disabling data protection. By controlling configuration bits in Status Register, use can protect data in memory array based on software protection schemes.

1Mb ~ 16Mb SPI MRAM

Table 13 : Status Register-Data Protection

Bits	Name	Read/ Write	Default State	Description
SR[7]	WPEN	R/W	-	Hardware Based WP Protect Bit 1: Protection Enabled – write protects when WP is Low 0: Protection Disabled – Doesn't write protect when WP is Low
SR[6]	SNPEN	R/W	-	Serial Number Protect Bit 1: Serial Number Write protected 0: Serial Number Writable
SR[5]	ТВ	R/W	-	Top/Bottom Memory Array Protect Selection 1: Bottom Protection Enabled (Lower Address Range) 0: Top Protection Enabled (Higher Address Range)
SR[4]	BP[2]	R/W	-	
SR[3]	BP[1]	R/W	-	Block Protection Bits
SR[2]	BP[0]	R/W	-	
SR[1]	WREN	R	0	Write Protection Enable 1: Write Operation Protection Disabled 0: Write Operation Protection Enabled
SR[0]	RSVD	R	-	Reserved for future use

Note : SR[7:2] are nonvolatile bits.

Write Protection Modes

WPEN bit $(SR_{[7]})$ is used in conjunction with the WREN bit $(SR_{[1]})$ and the WP pin to provide hardware block protection. SR_{[7:2]} will remain set from the nonvolatile registers whenever the power is on. The WREN bit is volatile and set "1" by the Write Enable command. It is set to "0" at power up. The device enters hardware protection when the WP input is low and the Status Register WPEN bit is set to 1, and the status and configuration register bits cannot be changed. The device exits from hardware protection when the /WP pin goes high or WPEN bit is set to 0, and the register bits can be changed.

WREN	WPEN	WP (Pin)		Memory ¹ Array Protected Area	Memory ¹ Array Unprotected Area		
0	х	Х	Protected	Protected	Protected		
1	0	Х	Unprotected	Protected	Unprotected		
1	1	0	Protected	Protected	Unprotected		
1	1	1	Unprotected	Protected	Unprotected		

Table 14 : Write Protection Modes

Notes:

1: Memory address range protection based on Block Protection Bits

2. X: Don't Care – Can be Logic '0' or '1'

3. Protected: Write protected, Unprotected: Writable

Block Protection Modes

The write protection blocks for the memory array are determined by the status register bits (TB and BP[2:0]) as Table 15. TB and BP[2:0] can be modified by WRSR command when the \overline{WP} input is high or the Status Register WPEN bit is set to 0, and MAPLK(CR1[2]) is set to 0.

CS82xx

ТВ	BP[2]	BP[1]	BP[0]	Protected Portion	1Mb	2Mb	4Mb	8Mb	16Mb
0/1	0	0	0	None	None	None	None	None	None
		_		1/04	01F800h –	03F000h –	07E000h –	0FC000h –	1F8000h –
0	0	0	1	Upper 1/64	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
	0	4	0	Ling og 1/00	01F000h –	03E000h –	07C000h –	0F8000h –	1F0000h –
0	0	1	0	Upper 1/32	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
	0	1	1	Linner 1/16	01E000h –	03C000h -	078000h –	0F0000h –	1E0000h –
0	0	I	I	Upper 1/16	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
0	1	0	0	Upper 1/8	01C000h -	038000h –	070000h –	0E0000h –	1C0000h –
0	I	0	0	Opper 1/6	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
0	1	0	1	Upper 1/4	018000h –	030000h –	060000h –	0C0000h	180000h –
0	I	0	I	Opper 1/4	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
0	1	1	0	Upper 1/2	010000h –	020000h –	040000h –	080000h –	100000h –
0	1		0		01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh
1	0	0	1	Lower 1/64	000000h –				
	0	0	I	Lowel 1/04	0007FFh	000FFFh	001FFFh	003FFFh	007FFFh
1	0	1	0	Lower 1/32	000000h –				
	0	I	0	LOWEI 1/32	000FFFh	001FFFh	003FFFh	007FFFh	00FFFFh
1	0	1	1	Lower 1/16	000000h –				
	0		-	Lower 1/10	001FFFh	003FFFh	007FFFh	00FFFFh	01FFFFh
1	1	0	0	Lower 1/8	000000h –				
	I	0	0	LOWEI 1/8	003FFFh	007FFFh	00FFFFh	01FFFFh	03FFFFh
1	1	0	1	Lower 1/4	000000h –				
		0			007FFFh	00FFFFh	01FFFFh	03FFFFh	07FFFFh
1	1	1	0	Lower 1/2	000000h –				

Table 15 : Block Protection Address Range Selection

1Mb ~ 16Mb SPI MRAM

					00FFFFh	01FFFFh	03FFFFh	07FFFFh	0FFFFFh
0/1	1	1	1	All	000000h –				
0/1				All	01FFFFh	03FFFFh	07FFFFh	0FFFFFh	1FFFFFh

Augmented 256-Byte Area Protection

Augmented 256-Byte Area Protection register contains options for enabling/disabling data protection for eight 32-byte sections.

Bits	Name	Address Range	Read/	Default	Description
Dits	Name	Address Range	Write	State	Description
ASP[7]	ASPS[7]	0000E0h – 0000FFh	R/W	0	
ASP[6]	ASPS[6]	0000C0h – 0000DFh	R/W	0	
ASP[5]	ASPS[5]	0000A0h – 0000BFh	R/W	0	
ASP[4]	ASPS[4]	000080h – 00009Fh	R/W	0	1: Protection Enabled
ASP[3]	ASPS[3]	000060h – 00007Fh	R/W	0	0: Protection Disabled
ASP[2]	ASPS[2]	000040h – 00005Fh	R/W	0	
ASP[1]	ASPS[1]	000020h – 00003Fh	R/W	0	
ASP[0]	ASPS[0]	000000h – 00001Fh	R/W	0	

Table 16 : Augmented 256-Byte Area Protection Register - Read and Write

Note : ASP[7:0] are nonvolatile bits.

Configuration Register 1 (Read/Write)

Configuration Register 1 controls locking/unlocking data protection options set in the Status register.

Once locked, the protection options cannot be changed in the Status register.

Bits	Name	Read/ Write	Default State	Selection Options
CR1[7]	RSVD	R/W	-	Reserved for future use
CR1[6]	RSVD	R/W	-	Reserved for future use
CR1[5]	RSVD	R/W	-	Reserved for future use
CR1[4]	RSVD	R/W	-	Reserved for future use
CR1[3]	RSVD	R/W	-	Reserved for future use
CR1[2]	MAPLK	R/W	-	Status Register TB, BP[2:0] Protect 1: Lock TB and BP[2:0] 0: Unlock TB and BP[2:0]

Table 17 : Configuration Register 1 - Read and Write

1Mb ~ 16Mb SPI MRAM

CR1[1]	RSVD	R/W	-	Reserved for future use
CR1[0]	ASPLK	K R/W -		Augmented 256-Byte Area Data Protection 1: Write Protection for Augmented Area Data regardless of ASP[7:0]
				0: Write Protection for Augmented Area Data depending on ASP[7:0]

Note : CR1[7:0] are nonvolatile bits.

Configuration Register 2 (Read/Write)

Configuration Register 2 controls the interface type along with memory array access latency.

Bits	Name	Read/	Default	Description
DIIS	Name	Write	State	Description
CR2[7]	RSVD	R/W	-	Reserved for future use
		Р	0	Quad SPI (QPI 4-4-4) Interface Mode 1: Quad SPI (QPI 4-4-4) Enabled
CR2[6]	QPIEN	R	0	0: Single SPI (SPI 1-X-X) Enabled
CR2[5]	RSVD	R/W	-	Reserved for future use
0.7.0	DPIEN	в	0	Dual SPI (DPI 2-2-2) Interface Mode 1: Dual SPI (DPI 2-2-2) Enabled
CR2[4]	DPIEN	R	0	0: Single SPI (SPI 1-X-X) Enabled
				Read Latency Selection Bits : CR2[3:0]
				0000: 0 Cycle
CR2[3]	RL[3]		-	0001: 1 Cycle
				0010: 2 Cycles
				0011: 3 Cycles
				0100: 4 Cycles
CR2[2]	RL[2]		-	0101: 5 Cycles
				0110: 6 Cycles
		R/W		0111: 7 Cycles
				1000: 8 Cycles
CR2[1]	RL[1]		-	1001: 9 Cycles
				1010: 10 Cycles
				1011: 11 Cycles
				1100: 12 Cycles
CR2[0]	RL[0]		-	1101: 13 Cycles
				1110: 14 Cycles
				1111: 15 Cycles

Table 18 : Configuration Register 2 - Read and Write

Notes:

1Mb ~ 16Mb SPI MRAM

1. Read Latency is frequency dependent.

2. Read(03h) does not depend on Read latency Selection Bits, CR2[3:0].

3. CR2[7,5,3:0] are nonvolatile bits.

Read Type	Data Rate	XIP	Latency Cycles	Max Frequency
1-1-1 (READ 03h)	SDR	-	0	54MHz
1-1-1, 1-1-2, 1-2-2, 2-2-2, 1-1-4, 1-4-4, 4-4-4	SDR	0	6.45	108MHz
1-1-1, 1-1-2, 1-2-2, 2-2-2, 1-1-4, 1-4-4, 4-4-4	DDR	0	6-15	54MHz

Table 19 : Read Latency Cycles vs. Maximum Frequency (Memory Area)

Notes:

Read(03h) does not depend on Read latency Selection Bits, CR2[3:0]. The latency of Read(03h) is always 0-cycle

Table 20 : Read Latency Cycles vs. Maximum Frequency (Augmented 256-Byte Area)

Read Type	Data Rate	XIP	Latency Cycles	Max Frequency
1-1-1 (RDAS 4Bh)	SDR	-	6-15	54MHz
1-1-1 (RDAS 4Bh)	SDR	-	8-15	108MHz

Table 21 : Latency Cycles vs. Maximum Frequency (Read Any Register Instruction)

Read Type	Data Rate	XIP	Latency Cycles	Max Frequency
1-1-1 (RDAR 65h)	SDR	-	8	108MHz
2-2-2 (RDAR 65h)	SDR	-	4	108MHz
4-4-4 (RDAR 65h)	SDR	-	2	108MHz

Notes:

1. RDAR(65h, read any register instruction) does not depend on Read latency Selection Bits, CR2[3:0].

CS82xx

Configuration Register 3 (Read/Write)

Configuration Register 3 controls the output driver strength along with the boundary size of read data wrapping.

Bits	Name	Read/ Write	Description		
CR3[7]	DRV[2]		Output Driver Strength Selection DRV[2:0] 3.3V 1.8V 000: 36Ω 35Ω		
CR3[6]	DRV[1]	R/W	001: 100Ω 95Ω 010: 75Ω 63Ω 011: 60Ω 50Ω 100: 48Ω 40Ω		
CR3[5]	DRV[0]		101: 41Ω 30Ω 110: 29Ω 26Ω 111: 24Ω 22Ω		
CR3[4]	WRPEN	R/W	Read WRAP Enable 1: Read Wrap Enabled 0: Read Wrap Disabled		
CR3[3]	RSVD	R/W	Reserved for future use		
CR3[2]	WRPL[2]		Wrap length configuration WRPL[2:0] 000: 16-byte wrap 001: 32-byte wrap 010: 64-byte wrap		
CR3[1]	WRPL[1]	R/W	011: 128-byte wrap 100: 256-byte wrap		
CR3[0]	WRPL[0]		101: 512-byte wrap 110: 1K-byte wrap 111: Reserved		

Table 22 : Configuration Register 3 - Read and Write

Notes:

Default output strength is DRV[2:0]=000.

CR3[7:0] are nonvolatile bits.

1Mb ~ 16Mb SPI MRAM

	Description		
	Read and write operation : continuous mode		
WRPEN(CR3[4]) =Low	Read or write operation starts at the input address, and once the address reaches the maximum address		
	boundary, it automatically returns to minimum address(000000h) until CS goes to high.		
	Read operations : wrap mode		
	Read wrap mode is enabled when WRPEN(CR3[4]) is High, and the read data wrap length is controlled by		
	WRPL[2:0]. The output data starts at the input address, data are output sequentially. Once it reaches the		
	ending boundary, the output will wrap around to the beginning boundary automatically until CS is pulled		
WRPEN(CR3[4])	high.		
=High			
	Write operation : continuous mode		
Write operation starts at the input address, and once the address reaches the maximum address			
	it automatically returns to minimum address(000000h) until CS goes to high.		

Configuration Register 4 (Read/Write)

Configuration Register 4 controls Write Enable protection (WREN – Status Register) reset functionality during memory array writing1. This functionality makes SPI MRAM compatible to other SPI devices.

Bits	Name	Read/ Write	Default State	Selection Options
CR4[7:2]	RSVD		-	Reserved for future use
CR4[1]	WRENS[1]	R/W	-	 00: Normal: WREN is prerequisite to all Memory Array and Augmented 256-byte Area Write instruction. (WREN is reset after CS goes High) 01: SRAM: WREN is not a prerequisite to Memory Array and Augmented 256-byte Area Write instruction (WREN is ignored)
CR4[0]	WRENS[0]		-	 10: Back-to-Back: WREN is prerequisite to only the first Memory Array Write or Augmented 256-byte Area instruction. WREN disable instruction must be executed to reset WREN. (WREN does not reset after CS goes High) 11: Reserved

Table 23 : Configuration Register 4 - Read and Write

Notes:

1. Write Enable protection (WREN – Status Register) for Registers is maintained irrespective of the Configuration Register 4 settings. In other words, all register write Instructions require WREN to be set and WREN resets once \overline{CS} goes High for the write instruction. CR4[1:0] only affects the writing for

memory and augmented 256-bytes area.

2. CR4[7:0] are nonvolatile bits.

Device Identification Register (Read Only)

Device identification register contains Manufacturing ID along with device configuration information.

	Bits	Manufacturer ID	Device Configuration				
Γ			Interface	Voltage	Temperature	Density	Freq
	ID[31:0]	ID[31:24]	ID[23:20]	ID[19:16]	ID[15:12]	ID[11:8]	ID[7:0]

Table 24 : De	evice Identifi	ration Regis	ter – Read	Only
1 4010 24.00		Jalion Negis	iei – iteau	Only

CS82xx

Manufacturer ID	Interface	Voltage	Temperature	Density	Frequency
31-24	23-20	19-16	15-12	11-8	7-0
				0001 : 1Mb	
	0000 : QSPI	0001 : 3.3V 0010 : 1.8V		0010 : 2Mb	
1101 1001			0000 : -40ºC~85⁰C	0011 : 4Mb	00000001 : 108MHz
				0100 : 8Mb	
				0101 : 16Mb	

Serial Number Register (Read/Write)

The device provides 64-bits Serial Number register and the user can write it.

Table 25 : Serial Number Register - Read and Write

Bits	Name	Description	Read/ Write	State
SN[63:0]	SN	Serial Number Value	R/W	User writable

Notes:

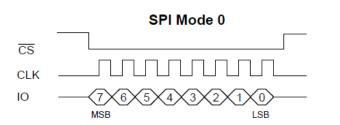
1: Serial Number Bits are non-volatile, and user should write the data after solder reflow process.

Unique Identification Register (Read Only)

Unique Identification register contains a number unique to every device.

1Mb ~ 16Mb SPI MRAM

Bits	Name	Description	Read/ Write	Selection Options
	UID	Unique Identification	R	Value stored is written in the factory and is device
UID[63:0]	UD	Number Value		specific


Device Operation

General Operation

Before an instruction is issued, status register should be checked to ensure device is ready for the intended operation. When correct command is input to this device, it enters active mode and remains in active mode until next \overline{CS} rising edge. Do not enter an invalid opcode(except instruction set). When \overline{CS} goes to high, the device enters standby mode. All communication between a host and the device is in the form of commands. commands define the operation that must be executed. Instruction consists of a command followed by an optional address modifier and data transferred. All command, address and data information are transferred sequentially.

SPI Clock Modes

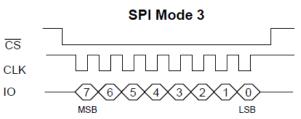

- The following two SPI clock modes are supported.
 - SPI Mode 0 (CPOL = 0, CPHA = 0) SDR and DDR
 - SPI Mode 3 (CPOL = 1, CPHA = 1) SDR only

Figure 5 : SPI Clock Modes

Clock stays in low level during idle state and starts toggling by going high

SPI Interface Modes

Clock stays in high level during idle state and starts toggling by going low

• The device supports 3 categories of SPI interface modes.

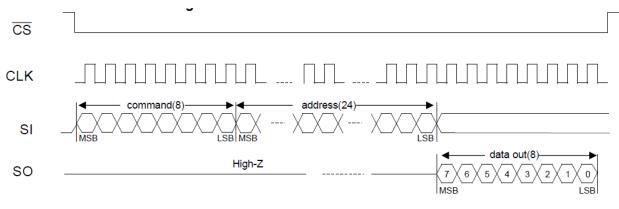
- Single SPI (SSPI) : command is transferred through one I/O pin.

- 1) Address and data are transferred through one pin
- 2) Address is transferred through one pin, data is transferred through two pins
- 3) Address is transferred through one pin, data is transferred through four pins
- 4) Address and data are transferred through two pins
- 5) Address and data are transferred through four pins
- Dual SPI (DSPI) : All command, address and data are transferred through two I/O pins.
- Quad SPI (QSPI) modes : All command, address and data are transferred through four I/O pins.
- Nomenclature adoption: A typical SPI instruction consists of command, address and data components. The bus width to transmit these three components varies based on the SPI interface mode selected. To accurately represent the number of I/Os used to transmit these three components, a nomenclature (command-address-data) is adopted and used throughout this document. Integers placed in the (command-address-data) fields represent the number of I/Os used to transmit the particular component. As an example, 1-1-1 means command, address and data are transmitted on a single I/O (SI / IO[0] or SO / IO[1]). On the other hand, 1-4-4 represents command being sent on a single I/O (SI / IO[0]) and address/data being sent on four I/Os (IO[3:0]).

CS82xx

Instruction	Interface Modes (Command-Address-Data)									
Component	SSPI 1-1-1	SSPI 1-1-2	SSPI 1-2-2	DSPI 2-2-2	SSPI 1-1-4	SSPI 1-4-4	QSPI 4-4-4			
Command	SI/IO[0]	SI/IO[0]	SI/IO[0]	IO[1:0]	SI/IO[0]	SI/IO[0]	IO[3:0]			
Address	SI/IO[0]	SI/IO[0]	IO[1:0]	IO[1:0]	SI/IO[0]	IO[3:0]	IO[3:0]			
Data Input	SI/IO[0]	IO[1:0]	IO[1:0]	IO[1:0]	IO[1:0]	IO[3:0]	IO[3:0]			
Data Output	SO/IO[1]	IO[1:0]	IO[1:0]	IO[1:0]	IO[3:0]	IO[3:0]	IO[3:0]			

Table 27 : Pin Assignment / Interface Modes


MSB/LSB Location in data bits

The most significant bit(MSB) is placed first at all commands, address and data.

1Mb ~ 16Mb SPI MRAM

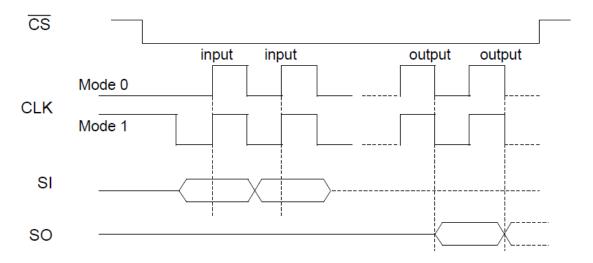
Figure 6 : Location of MSB and LSB

For Dual SPI and Quad SPI, the order of data bits is alternately decided among the IO pins.

Figure 7 : MSB and LSB in DSPI and QSPI

Note;

All commands, Address, XIP and Data follow this order.


Data Rate (SDR/DDR)

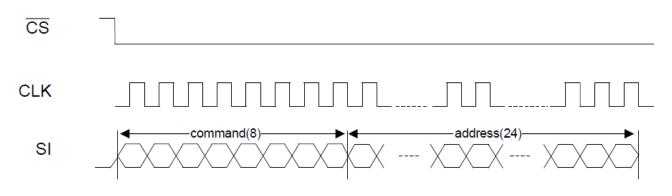
In Single Data Rate mode (SDR), command, address and data inputs are latched on the rising edge of the clock. Data is outputted on the falling edge of the clock.

Figure 8 : Description of SDR Instruction Type

CS82xx

In Double Data Rate mode (DDR), command is latched on the rising edge of the clock. Address and Data inputs are latched on both edges of the clock. Data is output on both edges of the clock.

Figure 9 : Description of DDR Instruction Type


Instruction Structure

Each instruction starts out with an 8-bit command. The command selects the type of operation. The instruction can be stand alone or followed by address to select a memory location or register. The address is always 24-bits wide.

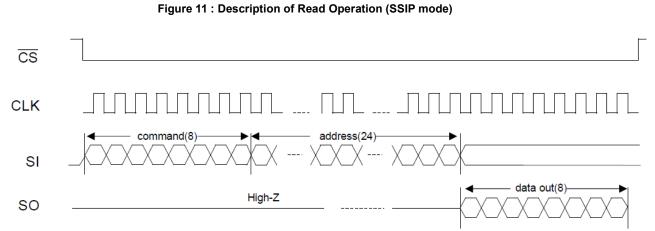
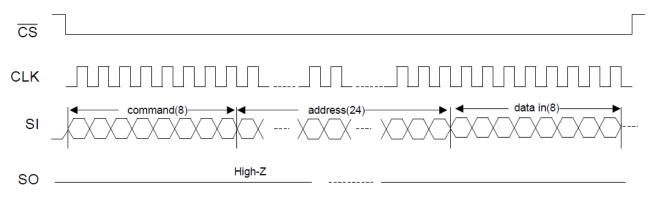

CS82xx

Figure 10 : Description of command followed by Address (SSIP mode)

Read Operation

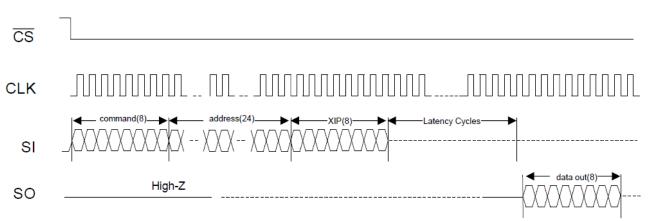
Read operation starts from pulling \overline{CS} Low. 8 bits Read command(03h) is transmitted to the device then 24 bit address is following while the first 7 MSB bits of address are don't care. The device outputs the data at selected address to the SO pin. The read operation can be terminated by pulling \overline{CS} high.


Write Operation

Write operation starts from pulling \overline{CS} Low. 8 bits Write command(02h) is transmitted to the device then 24 bit address is following while the first 7 MSB bits of address are don't care. The data on the SI pin is written to the device at selected address. The write operation can be terminated by pulling \overline{CS} high.

Figure12 : Description of Write Operation (SSPI mode)

CS82xx

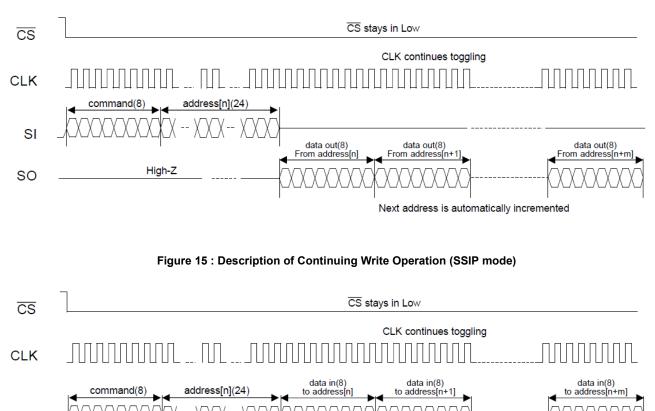


Note :

In normal operational mode, write instructions must be preceded by the WREN command. WREN command sets the WREN bit in the Status register. WREN bit is reset at the end of every Write instruction. WREN bit can also be reset by executing the WRDI command. The device offers two other modes, namely SRAM and Back-to-Back Write where WREN does not get reset after a write instruction to the memory array or the augmented 256-byte area. These modes are set in Configuration Register 4.

XIP (Execute in Place) Operation

For read and write operation, the device offers XIP (execute in place) mode. XIP allows a series of read or write operation without loading individual read or write command for each instruction, which results in reduced random-access time. XIP is enabled by entering byte AXh and disabled by entering any byte not equal to AXh. These respective bytes must be entered following the address bits. Read operation with XIP needs extra Read-Latency before data coming out from SO pin. The latencies are specified in Table 19 : Memory Array Read Latency Cycles vs. Maximum Clock Frequency (with XIP).


Figure 13 : Description of Read Operation with XIP (SSIP mode)

CS82xx

Continuing Read/Write

The entire memory array can be read from or written to using a single read or write instruction. After the starting address is entered, subsequent address is internally incremented as long as \overline{CS} is Low and CLK continues toggling.

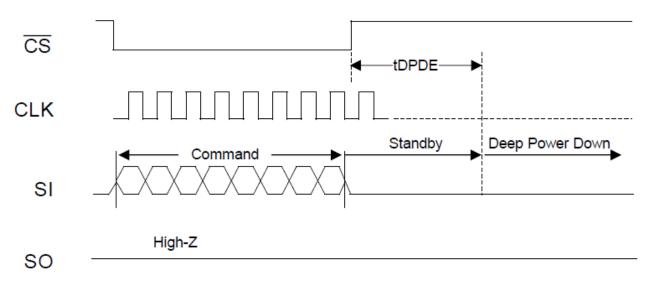
Figure 14 : Description of Continuing Read Operation (SSIP mode)

Next address is automatically incremented

For read operation, the device offers wrap mode. Wrap bursts are confined to address aligned 16/32/64/128/256/512/1K byte boundary. The read address can start anywhere within the wrap boundary. 16/32/64/128/256/512/1K wrap configuration is set in Configuration Register 3.

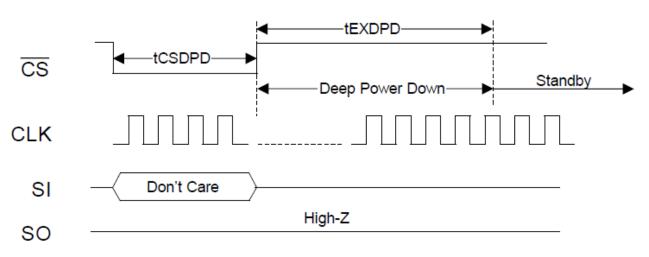
Deep Power Down Modes

SI


The device provides Deep Power Down mode. This mode reduces current consumption from ISB to IDPD.

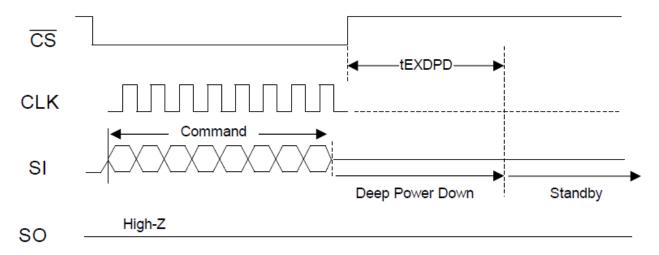
To enter the deep power down mode, \overline{CS} is driven low, following the enter Deep Power Down (DPDE) command, \overline{CS} must be driven high after the eighth bit of the command code has been latched in or the DPDE command will not be executed. After \overline{CS} is driven high, it requires a delay of tDPDE before the supply current is reduced to IDPD and the Deep Power Down mode is entered. The command can be issued in SPI, DSPI or QSPI modes.

1Mb ~ 16Mb SPI MRAM


Figure 16 : Entering Deep Power Down Mode (SSIP mode)

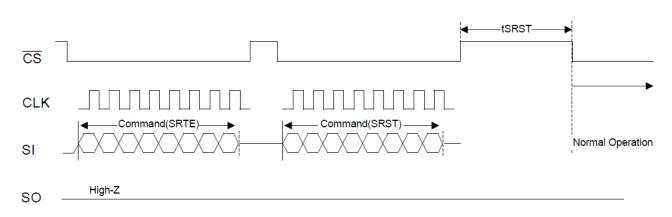
• There are two ways to exit deep power down mode:

- 1. Toggling CS with a CS pulse width of tCSDPD while CLK and I/Os are Don't Care. During waking up from deep power down, I/Os remain to be in high-Z.
- 31



2. Driving CS low follows with the Exit Deep Power Down (EXDPD, ABh) command. CS must be driven high after the eight bits of the command code has been latched in or the EXDPD command will not be executed.

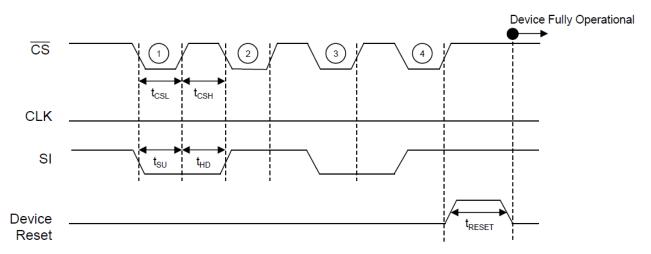
1Mb ~ 16Mb SPI MRAM


Figure 18 : Exit Deep Power Down Mode by SPI Command

- It requires a delay of tEXDPD before the device can fully exit the deep power down mode and enter standby mode.
- Status of all non-volatile bits in registers remains unchanged when the device enters or exits the deep power down mode.
- The command can be issued in SPI, DPI, and QPI mode.

Software Reset

Software Reset (SRST) requires Software Reset Enable (SRTE) implemented in advance.


Figure 19 : Software Reset Timing

1Mb ~ 16Mb SPI MRAM

JEDEC Reset

Figure 20 : JEDEC Reset Operation Timing

Table 28 : JEDEC Reset Operation & Timing : 1.8V Device

Parameter	Symbol	Min.	Max.	Units
CS Low Time	t _{CSL}	0.5	-	μs
CS High Time	t _{CSH}	0.5	-	μs
SI Setup Time (w.r.t CS)	t _{SU}	5.0	-	ns
SI Hold Time (w.r.t CS)	t _{HD}	5.0	-	ns
JEDEC Hardware Reset	t _{RESET}	-	2.0	ms

Table29 : JEDEC Reset Operation & Timing : 3.3V Device

Parameter	Symbol	Min.	Max.	Units
CS Low Time	t _{CSL}	0.5	-	μs
CS High Time	t _{CSH}	0.5	-	μs
SI Setup Time (w.r.t CS)	t _{su}	5.0	-	ns
SI Hold Time (w.r.t CS)	t _{HD}	5.0	-	ns
JEDEC Hardware Reset	t _{RESET}	-	300	us

CS82xx

Electrical Specifications

Absolute Maximum Ratings

Stresses greater that those listed may cause permanent damage to the device. This is a stress rating only. Exposure to maximum rating for extended periods may adversely affect reliability.

Parameter	Min.	Max.	Units		
Voltage on Vcc Supply Relative to VSS : 3.3V Device	-0.5	3.8	V		
Voltage on Any Pin relative to VSS : 3.3V Device	-0.5	3.8	V		
Voltage on Vcc Supply Relative to VSS : 1.8V Device	-0.5	2.35	V		
Voltage on Any Pin relative to VSS : 1.8V Device	-0.5	2.35	V		
Storage Temperature	-55	150	°C		
Operating Ambient Temperature	-40	85	°C		
ESD HBM (Human Body Model)	≥	V			
ESD CDM (Charged Device Model)	2	V			
	JEDEC J-STD-020 reflow profiles				
Solder Reflow Process	Peak temperature ≤ 260°C				
	The time above 255°C ≤ 30 seconds				
	Reflow cycles ≤ 3 times				

Table 30 : Absolute Maximum Ratings

Endurance, Retention and Magnetic Immunity

Table 31 : Endurance,	Retention an	nd Magnetic	mmunity
-----------------------	--------------	-------------	---------

Parameter	Conditions Min. Max.		Max.	Units	
Write Endurance	-25°C	10 ¹⁴	-	cycles	
Data Retention	85°C	85°C 10 -		years	
Magnetic Field During Write or Read	-	-	24,000	A/m	

Recommended Operating Conditions

Table 32 : Recommended Operating Conditions							
Parameter / Condition		Min.	Тур.	Max.	Units		
Operating Temperature	Commercial	0	25	70	°C		
	Industrial	-40	25	85	°C		
Vcc Supply Voltage : 3.3V Device		2.7	3.3	3.6	V		
Vcc Supply Voltage : 1.8V Device		1.71	1.8	1.98	V		
Vss Supply Voltage		0.0	0.0	0.0	V		

CS82xx

Pin Capacitance

Table 33 : Pin Capacitance						
Parameter	Conditions	Тур.	Max.	Units		
Input Pin Capacitance	TEMP = 25°C; f = 1 MHz; V _{IN} = 0V	-	4	pF		
Input/Output Pin Capacitance	TEMP = 25°C; f = 1 MHz; $V_{I/O}$ = 0V	-	6	pF		

AC Test Condition

Table 34 : AC Test Conditions

Parameter	Value	
Input pulse levels	0.0V to Vcc	
Input rise and fall times	1ns/1V	
Input and output measurement timing levels	Vcc/2	
Output Load	CL = 30pF	

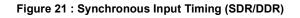
1Mb ~ 16Mb SPI MRAM

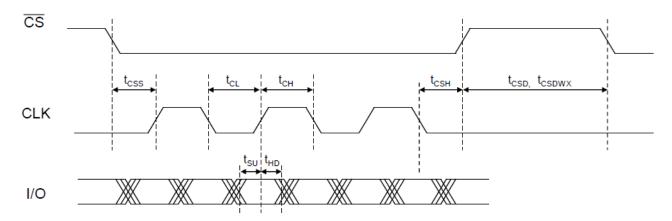
DC Characteristics

Demonstern	Question	Test Conditions		2.7V-3.6V		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Leakage Current	ILI	V _{IN} = 0 to Vcc (max)	-2	-	2	μA
Output Leakage Current	I _{LO}	V _{OUT} = 0 to Vcc (max)	-2	-	2	μA
Read Current (1-1-1)	I _{CCR1}		-	3	4	mA
Read Current (2-2-2)	I _{CCR2}	SDR=54MHz, DDR=27MHz CS =0, CLK=0/Vcc, I _{OUT} =0mA	-	4	5	mA
Read Current (4-4-4)	I _{CCR3}	-0, CLK-0/VCC, I _{OUT} -0/11A	-	5	6	mA
Read Current (1-1-1)	I _{CCR4}		-	4	5	mA
Read Current (2-2-2)	I _{CCR5}	SDR=108MHz, DDR=54MHz CS	-	6	7	mA
Read Current (4-4-4)	I _{CCR6}	=0, CLK=0/Vcc, I _{OUT} =0mA	-	8	10	mA
Write Current (1-1-1)	I _{CCW1}		-	5	6	mA
Write Current (2-2-2)	I _{CCW2}	SDR=54MHz, DDR=27MHz CS	-	8	9	mA
Write Current (4-4-4)	I _{CCW3}	=0 ,CLK=0/Vcc, I/O=0/Vcc	-	13	16	mA
Write Current (1-1-1)	I _{CCW4}		-	8	9	mA
Write Current (2-2-2)	I _{CCW5}	SDR=108MHz, DDR=54MHz CS	-	13	17	mA
Write Current (4-4-4)	I _{CCW6}	=0, CLK=0/Vcc, I/O=0/Vcc	-	25	30	mA
Standby Current	I _{SB}	CLK=0, CS = Vcc, I/O=0/Vcc	-	330	490	μA
Deep Power Down Current	I _{DPD}	CLK=0, CS = Vcc, I/O=0/Vcc	-	80	150	μA
Input High Voltage	V _{IH}	-	0.7xVcc	-	Vcc+0.3	V
Input Low Voltage	V _{IL}	-	-0.3	-	0.2xVcc	V
Output High Voltage Level	V _{OH}	I _{OH} = -1mA	2.4	-	-	V
Output Low Voltage Level	V _{OL}	I _{OL} = 2mA	-	-	0.4	V

Table 35 : DC Characteristics : 3.3V Device

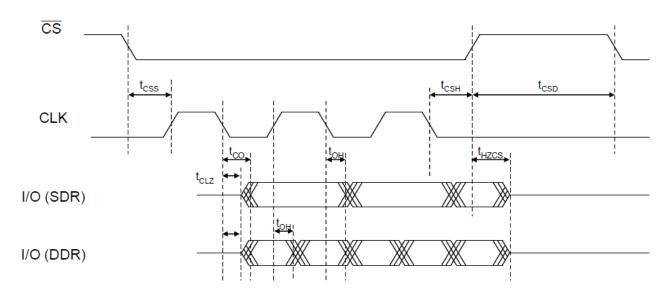
1Mb ~ 16Mb SPI MRAM


DC Characteristics


Devenuetor	Cumph al	Test Canditians	1	.71V~1.98	1V~1.98V	
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Leakage Current	I _{LI}	V _{IN} = 0 to Vcc (max)	-2	-	2	μA
Output Leakage Current	I _{LO}	V _{OUT} = 0 to Vcc (max)	-2	-	2	μA
Read Current (1-1-1)	I _{CCR1}		-	2	3	mA
Read Current (2-2-2)	I _{CCR2}	SDR=54MHz, DDR=27MHz CS =0, CLK=0/Vcc, I _{OUT} =0mA	-	3	4	mA
Read Current (4-4-4)	I _{CCR3}		-	4	5	mA
Read Current (1-1-1)	I _{CCR4}		-	3	4	mA
Read Current (2-2-2)	I _{CCR5}	SDR=108MHz, DDR=54MHz CS =0, CLK=0/Vcc, I _{OUT} =0mA	-	4	5	mA
Read Current (4-4-4)	I _{CCR6}	-0, CER-0/VCC, I _{OUT} -011A	-	6	7	mA
Write Current (1-1-1)	I _{CCW1}		-	4	5	mA
Write Current (2-2-2)	I _{CCW2}	SDR=54MHz, DDR=27MHz CS =0 ,CLK=0/Vcc, I/O=0/Vcc	-	7	8	mA
Write Current (4-4-4)	I _{CCW3}	-0,0LK-0/VCC, 1/0-0/VCC	-	12	15	mA
Write Current (1-1-1)	I _{CCW4}		-	7	8	mA
Write Current (2-2-2)	I _{CCW5}	SDR=108MHz, DDR=54MHz CS	-	12	15	mA
Write Current (4-4-4)	I _{CCW6}	=0, CLK=0/Vcc, I/O=0/Vcc	-	22	28	mA
Standby Current	I _{SB}	CLK=0, CS = Vcc, I/O=0/Vcc	-	280	450	μA
Deep Power Down Current	I _{DPD}	CLK=0, CS = Vcc, I/O=0/Vcc	-	25	100	μA
Input High Voltage	V _{IH}	-	0.7xVcc	-	Vcc+0.3	V
Input Low Voltage	VIL	-	-0.3	-	0.3xVcc	V
Output High Voltage Level	V _{OH}	I _{OH} = -1mA	1.4	-	-	V
Output Low Voltage Level	V _{OL}	I _{OL} = 2mA	-	-	0.4	V

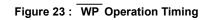
AC Timing Characteristics

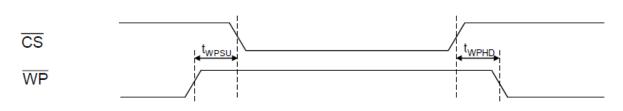
Synchronous Input Timing



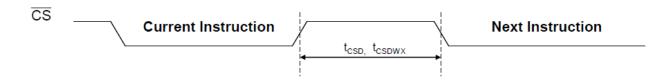
CS82xx

Synchronous Data Output Timing





1Mb ~ 16Mb SPI MRAM


WP Timing

CS High Time

Figure 24 : CS High Timing

Table 37 : CS High Time after Write Instruction : SDR=108MHz/DDR=54MHz
--

Current Instruction : Main Array Write	Next Instruction : Main Array Read or Write	Symbol	Min.	Units
(1-1-1), (1-x-2)	(1-1-x)	t _{CSDW1}	20	ns
(1-1-1), (1-x-2)	(1-2-2)	t _{CSDW2}	130	ns
(1-x-4)	(1-1-x)	t _{CSDW3}	130	ns
(1-1-1), (1-x-2)	(1-4-4)	t _{CSDW4}	190	ns
(1-x-4)	(1-2-2), (1-4-4)	t _{CSDW5}	300	ns
(2-2-2)	(2-2-2)	t _{CSDW6}	170	ns
(4-4-4)	(4-4-4)	t _{CSDW7}	350	ns

Table 38 : CS High Time after Write Instruction : SDR=54MHz/DDR=27MHz	Table 38 :	CS High Time after	r Write Instruction	: SDR=54MHz/DDR=27MHz
---	------------	--------------------	---------------------	-----------------------

Current Instruction : Main Array Write	Next Instruction : Main Array Read or Write	Symbol	Min.	Units
(X-X-X)	(1-4-4)	t _{CSDW8}	70	ns
(2-2-2)	(2-2-2)	t _{CSDW9}	70	ns
(4-4-4)	(4-4-4)	t _{CSDW10}	180	ns
Others		t _{CSDW11}	20	ns

CS82xx

Current Instruction	Next Instruction	Symbol	Min.	Units
Main Array Write Instruction	Register Read/Write Augmented 256- Byte Read/Write	t _{CSDW12}	500	ns
Register Write Augmented 256-Byte Write	Any Instructions	t _{CSDW13}	1000	ns

Table 39 : CS High Time after Register/Augmented 256-Byte Area Write Instruction

AC Timing Parameters

Parameter	Symbol	Min.	Max.	Units
Clock Frequency – SDR	f _{CLK}	1	108	MHz
Clock Frequency – DDR	f _{CLK}	1	54	MHz
Clock Low Time	t _{CL}	0.45 * 1/ fCLK	-	ns
Clock High Time	t _{CH}	0.45 * 1/ fCLK	-	ns
CS Setup Time	t _{css}	5	-	ns
CS Hold Time	t _{CSH}	4	-	ns
CS High Time after Any Instruction (except Write)	t _{CSD}	20	-	ns
CS High Time after Write Instruction	t _{CSDWx}	Refer to Tab	le 37, 38, 39	ns
Data Setup Time	t _{SU}	2	-	ns
Data Hold Time	t _{HD}	2	-	ns
CLK Low to Output Valid	t _{co}	-	7.0	ns
CLK to Output Hold Time	t _{OH}	2.0	-	ns
CLK Low to Output Low Z (Read)	t _{CLZ}	2.0	-	ns
CS High to Output High Z	t _{HZCS}	-	6.0	ns
WP Setup Time	t _{wPSU}	20	-	ns
WP Hold Time	t _{wPHD}	20	-	ns
CS High to Power-down mode	t _{EDPD}	-	1	us
CS High to Power-down mode exit	t _{EXDPD}	-	25	us
CS Low time to exit Power-down mode	t _{CSDPD}	50	-	ns
Software Reset Time (3.3V Device)	t _{SRST}	-	0.3	ms
Software Reset Time (1.8V Device)	t _{srst}	-	2.0	ms

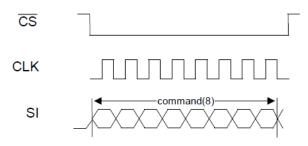
Table 40 : AC Timing Parameter

Thermal Resistance

CS82xx

Parameter	Description	8-pad WSON	8-pin SOIC	Unit	
θJA	Thermal resistance (junction to ambient)	30.6	93.9	°C/M	
θJC	Thermal resistance (junction to case)	19.0	31.9	°C/W	

Notes:


1: These parameters are guaranteed by characterization; not tested in production.

Timing Description of Instruction Sets

Single SPI – SDR (Command-Address-Data)

- Instruction 1-0-0 ; NOOP, WREN, WRDI, DPIE, QPIE, DPDE, DPDX, SRTE, SRST

Figure 25 : Timing Description of 1-0-0 Instruction Type

- Instruction 1-0-1 ; RDSR, RDC1, RDC2, RDC3, RDC4, RDCX, RDID, RUID, RDSN, RDAP

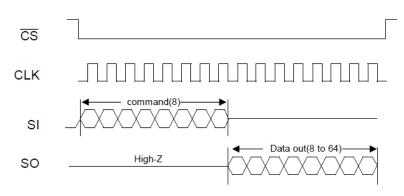
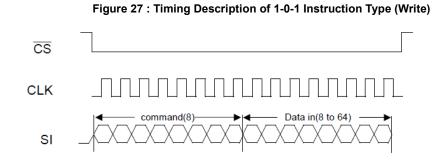
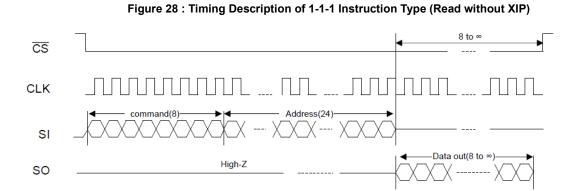
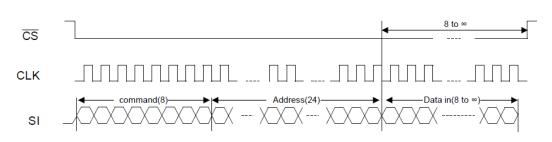



Figure 26 : Timing Description of 1-0-1 Instruction Type (Read)



- Instruction 1-0-1 ; WRSR, WRCX, WRSN, WRAP

CS82xx

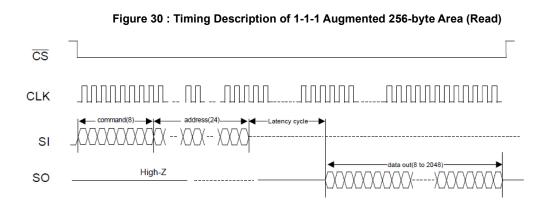

- Instruction 1-1-1 ; READ(03h)

Notes:

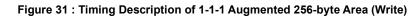
As long as CS stays in low and CLK keeps toggling, next target address is incremented automatically, and the device keeps outputting data from memory array.

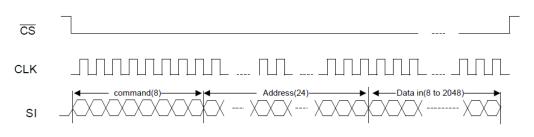
- Instruction 1-1-1 ; WRTE(02h)

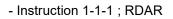
Figure 29 : Timing Description of 1-1-1 Instruction Type (Write)

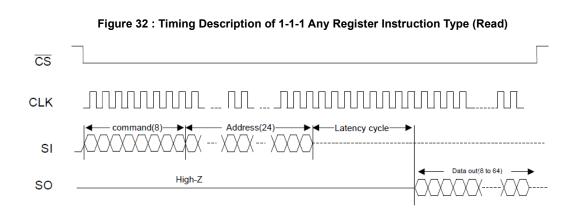

Notes:

As long as CS stays in low and CLK keeps toggling, next target address is incremented automatically, and the device keeps writing data to memory array.

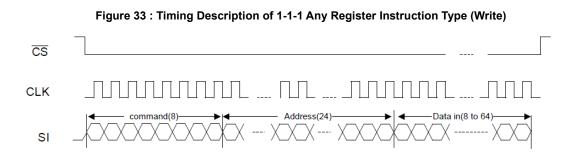


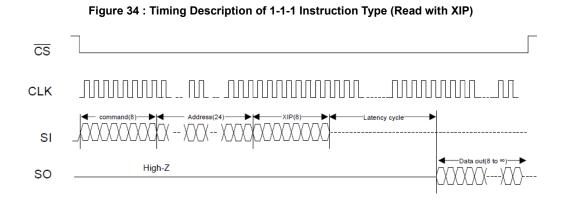

1Mb ~ 16Mb SPI MRAM


- Instruction 1-1-1 ; RDAS

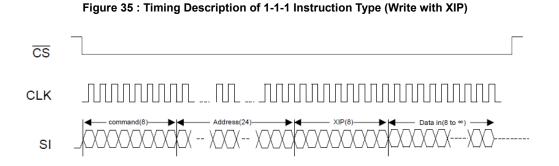


- Instruction 1-1-1 ; WRAS

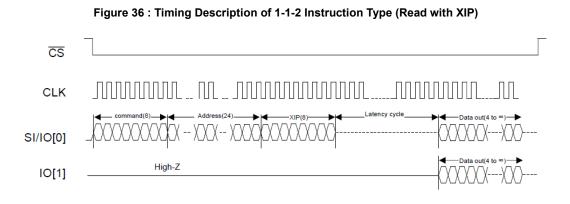


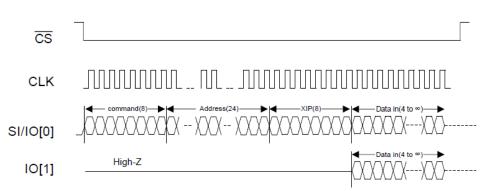


1Mb ~ 16Mb SPI MRAM


- Instruction 1-1-1 ; WRAR

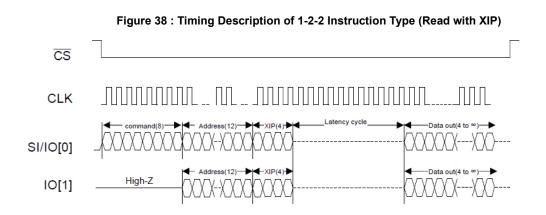
- Instruction 1-1-1; RDFT


- Instruction 1-1-1 ; WRFT

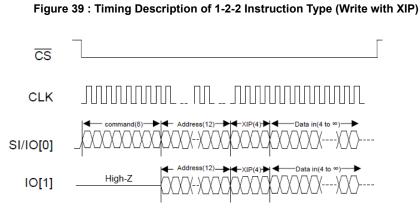


1Mb ~ 16Mb SPI MRAM

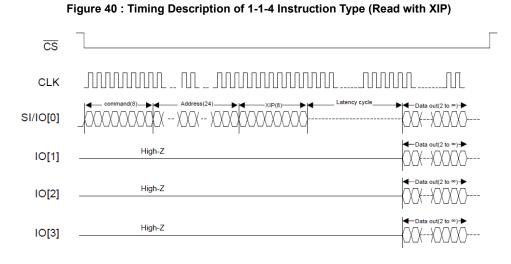
- Instruction 1-1-2 ; RDDO



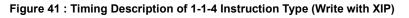
- Instruction 1-1-2 ; WDUI

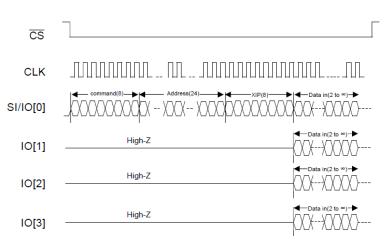

Figure 37 : Timing Description of 1-1-2 Instruction Type (Write with XIP)

- Instruction 1-2-2 ; RDDI

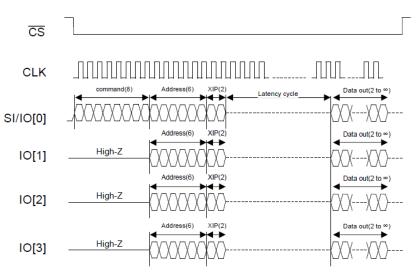


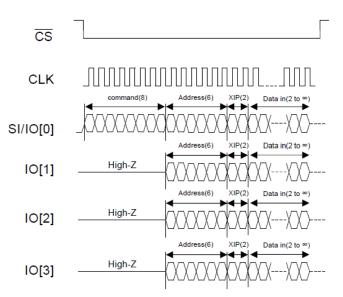
- Instruction 1-2-2 ; WDIO

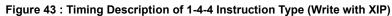



CS82xx

- Instruction 1-1-4 ; RDQO


- Instruction 1-1-4 ; WQDI

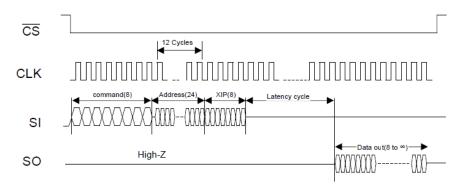

- Instruction 1-4-4 ; RDQI



CS82xx

Figure 42 : Timing Description of 1-4-4 Instruction Type (Read with XIP)

- Instruction 1-4-4 ; WQIO



1Mb ~ 16Mb SPI MRAM

Single SPI - DDR (Command-Address-Data)

- Instruction 1-1-1 ; DRFR

- Instruction 1-1-1 ; DRFW

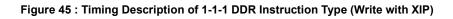
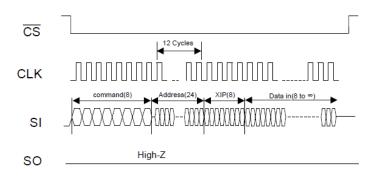



Figure 44 : Timing Description of 1-1-1 DDR Instruction Type (Read with XIP)

- Instruction 1-1-2 ; DRDO

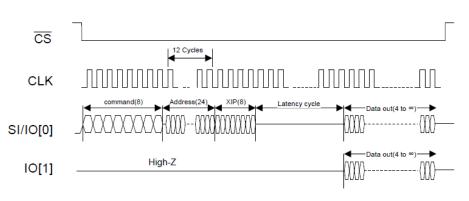
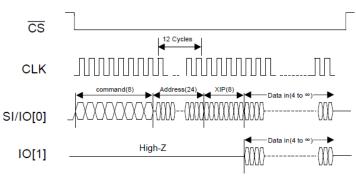



Figure 46 : Timing Description of 1-1-2 DDR Instruction Type (Read with XIP)

- Instruction 1-1-2 ; DWUI

CS82xx

- Instruction 1-2-2 ; DRDI

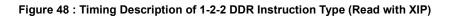
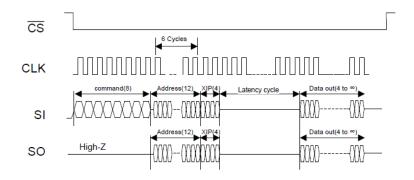



Figure 47 : Timing Description of 1-1-2 DDR Instruction Type (Write with XIP)

- Instruction 1-2-2 ; DWIO

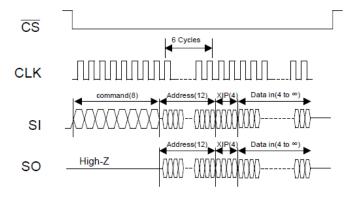
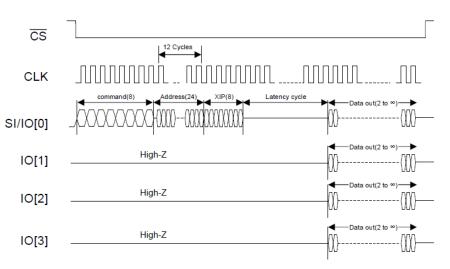



Figure 49 : Timing Description of 1-2-2 DDR Instruction Type (Write with XIP)

1Mb ~ 16Mb SPI MRAM

- Instruction 1-1-4 ; DRQO

Figure 50 : Timing Description of 1-1-4 DDR Instruction Type (Read with XIP)

- Instruction 1-1-4 ; DWQI

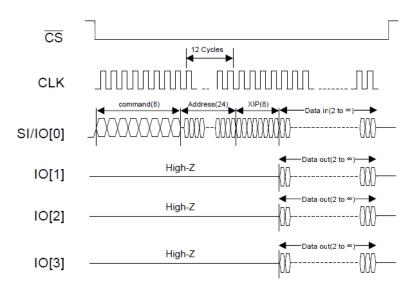


Figure 51 : Timing Description of 1-1-4 DDR Instruction Type (Write with XIP)

1Mb ~ 16Mb SPI MRAM

- Instruction 1-4-4 ; DRQI

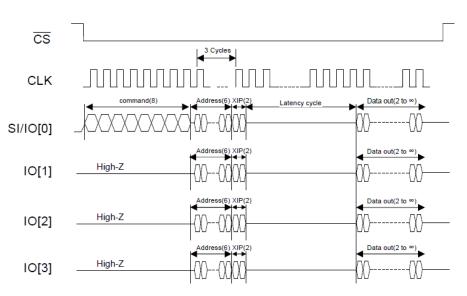


Figure 52 : Timing Description of 1-4-4 DDR Instruction Type (Read with XIP)

- Instruction 1-4-4 ; DWQO

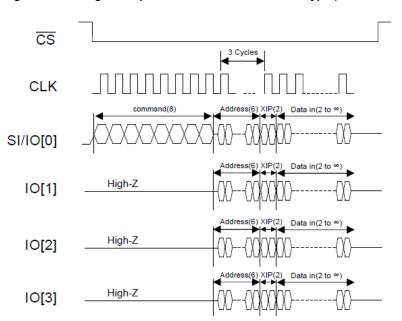
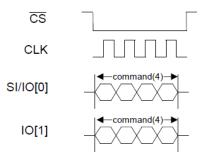


Figure 53 : Timing Description of 1-4-4 DDR Instruction Type (Write with XIP)



Dual SPI – SDR (Command-Address-Data)

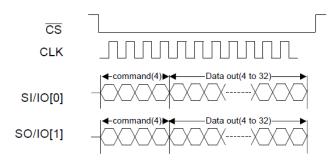
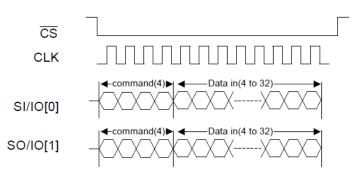

- Instruction 2-0-0 ; NOOP, WREN, WRDI, QPIE, SPIE, DPDE, DPDX, SRTE, SRST

Figure 54 : Timing Description of 2-0-0 Instruction Type

CS82xx



- Instruction 2-0-2 ; RDSR, RDC1, RDC2, RDC3, RDC4, RDCX, RDID, RUID, RDSN, RDAP

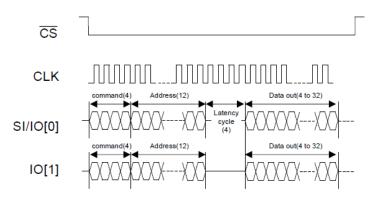
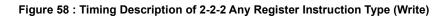
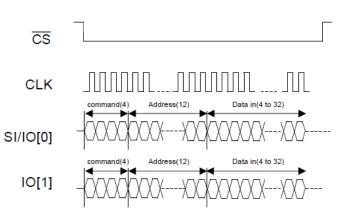
Figure 55 : Timing Description of 2-0-2 Instruction Type (Read)

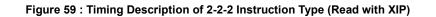
- Instruction 2-0-2 ; WRSR, WRCX, WRSN, WRAP

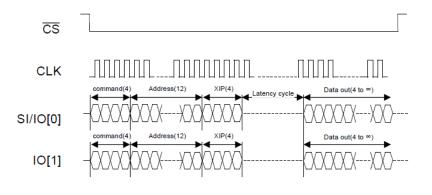
Figure 56 : Timing Description of 2-0-2 Instruction Type (Write)

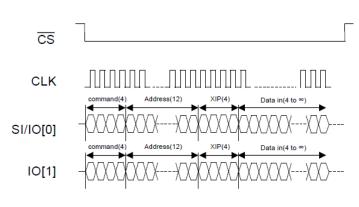
1Mb ~ 16Mb SPI MRAM

- Instruction 2-2-2 ; RDAR


Figure 57 : Timing Description of 2-2-2 Any Register Instruction Type (Read)


- Instruction 2-2-2 ; WRAR


- Instruction 2-2-2 ; RDFT

- Instruction 2-2-2 ; WRFT

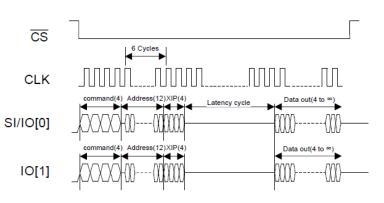
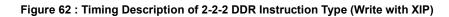


Figure 60 : Timing Description of 2-2-2 Instruction Type (Write with XIP)

CS82xx


Dual SPI - DDR (Command-Address-Data)

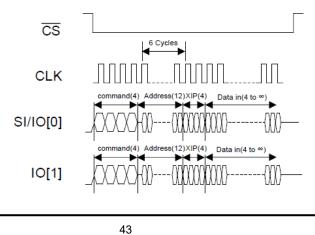
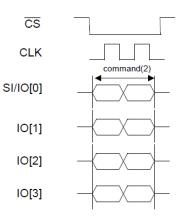
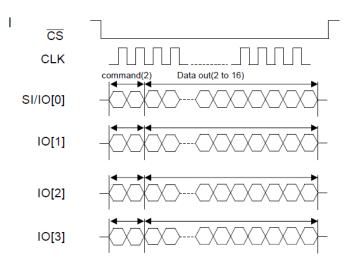

- Instruction 2-2-2 ; DRFR

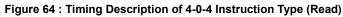
Figure 61 : Timing Description of 2-2-2 DDR Instruction Type (Read with XIP)

- Instruction 2-2-2 ; DRFW



Quad SPI – SDR (Command-Address-Data)


- Instruction 4-0-0 ; NOOP, WREN, WRDI, DPIE, SPIE, DPDE, DPDX, SRTE, SRST


Figure 63 : Timing Description of 4-0-0 Instruction Type

CS82xx

- Instruction 4-0-4 ; RDSR, RDC1, RDC2, RDC3, RDC4, RDCX, RDID, RUID, RDSN, RDAP

- Instruction 4-0-4 ; WRSR, WRCX, WRSN, WRAP

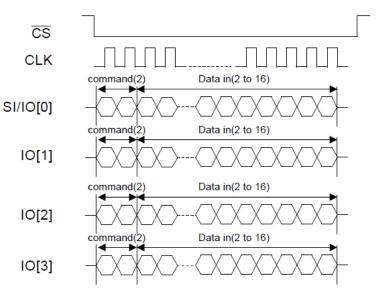


Figure 65 : Timing Description of 4-0-4 Instruction Type (Write)

CS82xx

- Instruction 4-4-4 ; RDAR

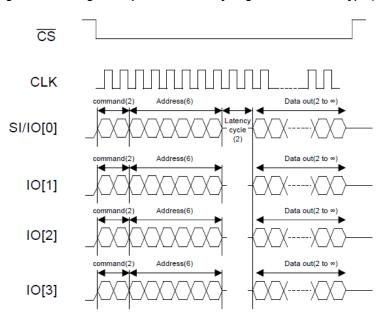


Figure 66 : Timing Description of 4-4-4 Any Register Instruction Type (Read)

1Mb ~ 16Mb SPI MRAM

- Instruction 4-4-4 ; WRAR

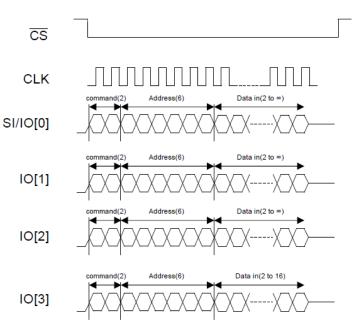
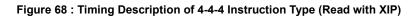
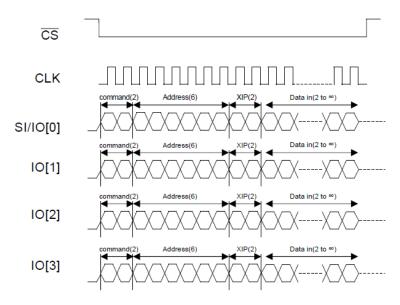



Figure 67 : Timing Description of 4-4-4 Any Register Instruction Type (Write)

- Instruction 4-4-4 ; RDFT



1Mb ~ 16Mb SPI MRAM

- Instruction 4-4-4 ; WRFT

Figure 69 : Timing Description of 4-4-4 Instruction Type (Write with XIP)

Quad SPI - DDR (Command-Address-Data)

- Instruction 4-4-4 ; DRFR

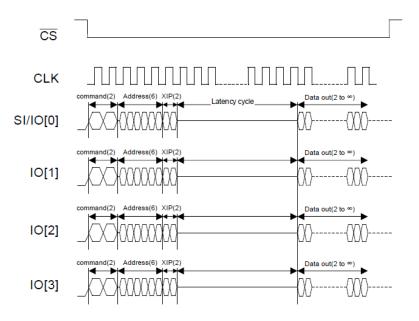


Figure 70 : Timing Description of 4-4-4 DDR Instruction Type (Read with XIP)

1Mb ~ 16Mb SPI MRAM

- Instruction 4-4-4 ; DRFW

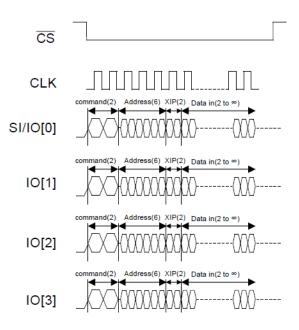
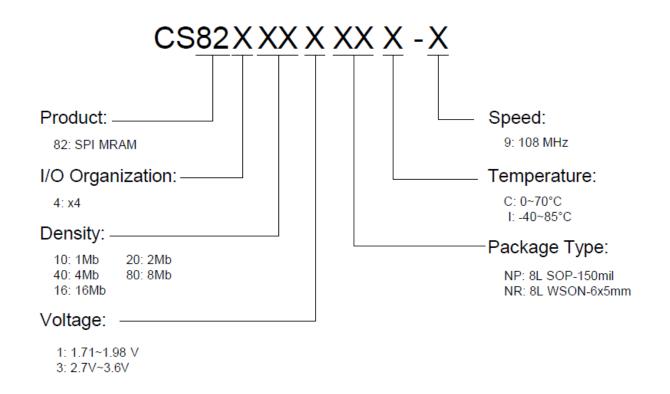
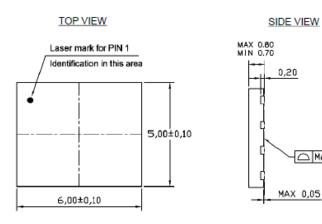
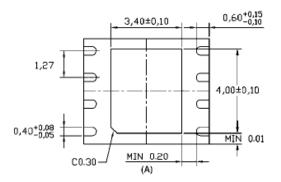



Figure 71 : Timing Description of 4-4-4 DDR Instruction Type (Write with XIP)

Ordering Information



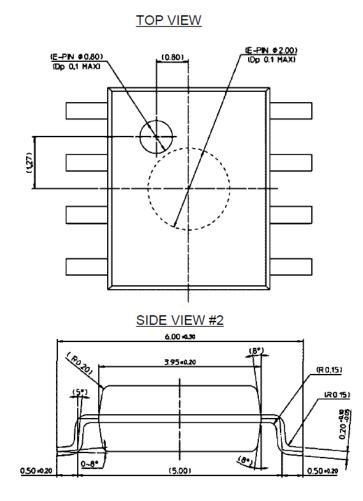
1Mb ~ 16Mb SPI MRAM

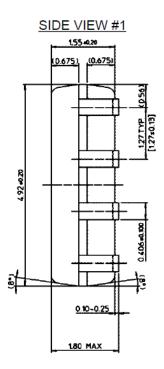

MAX 0.08

Package Dimension

8L WSON 6x5mm

BOTTOM VIEW


Note:


- 1. These dimensions do not include MOLD protrusion.
- 2. The exposed pad size must not violate the minimum metal separation requirement (A)
- 3. The PKG has exposed metal pad underneath the package, it can't contact to metal trace or pad on board.

1Mb ~ 16Mb SPI MRAM

8L SOP – 150mil

TITLE 8-SOP-225					
PACKAGE OUTLINE					
UNIT	TOLERANCE	ŜCALE			
mm	±0.10	N/A			