

Revision History

Rev. No.

<u>History</u>

1.0

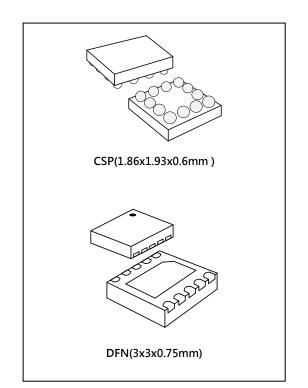
New issue

Issue Date

Oct. 05,2022

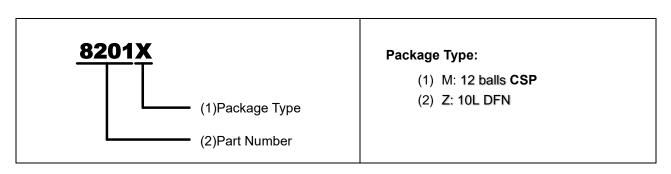
Dual-Channel Gate Driver for Enhancement Mode GaN FETs

Description


The CS8201 is a high performance dual gate driver optimized to drive half bridge N-Channel GaN FETs. A high floating top driver design can accommodate HB voltage as high as 80V. The CS8201 has split gate outputs, providing flexibility to adjust the turn-on and turn-off strength independently.

In addition, the strong sink capability of the CS8201 maintains the gate in the low state, preventing unintended turn-on during switching. The CS8201 can operate up to several MHz. This device also supports supply input under voltage lockout.

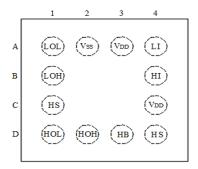
The CS8201 uses 12 balls CSP package. and 10L DFN- 3x3x0.75mm.


Features

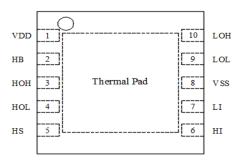
- Independent High-Side and Low-Side TTL Logic Inputs
- 1.2A/5A Peak Source/Sink Current
- High-Side Floating Bias Voltage Rail Operates up to 80V_{DC}
- Split Outputs for Adjustable Turn-on/Turn-off Strength
- $0.6\Omega / 2.1\Omega$ Pull-down/Pull-up Resistance
- Fast Propagation Times (30ns Typical)
- Excellent Propagation Delay Matching (1.5ns Typical)
- Supply Rail Under-Voltage Lockout
- Low Power Consumption

Applications

- Current Fed Push-Pull converters
- Half and Full-Bridge converters
- Synchronous Buck converters
- Two-switch Forward converters
- Forward with Active Clamp converters


Ordering & Marking Information

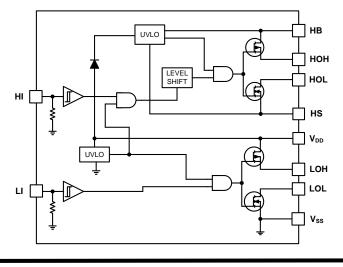
2



Pin Configuration

CS8201

12 balls CSP (Top View)



10L DFN (Top View)

Pin Description

PIN NO.	SYMBOL	DESCRIPTION
A3,C4	V _{DD}	Power Supply Pin
D3	HB	High-Side Bootstrap
D2	НОН	High-side gate driver turn-on output, use a resistor to set the turn-on speed.
D1	HOL	High-side gate driver tum-off output, use a resistor to set the turn-off speed.
C1,D4	HS	High-side source connection
B4	HI	High–Side Input
A4	LI	Low-Side Input
A2	Vss	Ground
A1	LOL	Low-side gate driver sink-current output, use a resistor to set the turn-off speed.
B1	LOH	Low-side gate driver source- current output, use a resistor to set the turn-on speed.

Functional Block Diagram

3

Absolute Maximum Ratings (Note 1)

PARAMETER	RATINGS	UNIT
V _{DD} to V _{SS}	-0.3 ~ 7	V
HB to HS	-0.3 ~ 7	V
LI or HI Input	-0.3 ~ 7	V
LOH, LOL Output	-0.3 ~ V _{DD} +0.3	V
HOH, HOL Output	V _{HS} -0.3 ~ V _{HB} +0.3	V
HS to Vss	−5V ~ +80	V
HB to Vss	0~87	V
HB to VDD	0~80	V
Junction Temperature	150	°C
Storage Temperature Range	-55 ~ +150	°C

Recommended Operation Conditions (Note 2)

PARAMETER	RATINGS	UNIT
VDD	+4.5 ~ +5.5	V
Ll or Hl Input	0~+5.5	V
HS	-5~80	V
НВ	V _{HS} +4 ~ V _{HS} +5.5	V
HS Slew Rate	<50	V/ns
Junction Temperature	-40~+125	°C

Note 1:Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device.

These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2:The device is not guaranteed to function outside its operating conditions.

CS8201

Electrical Characteristics

Typical values represent the most likely parametric norm at $T_A=25$ °C, and are provided for reference purposes only. Unless otherwise specified, $V_{DD}=V_{HB}=5V$, $V_{SS}=V_{HS}=0V$, No Load on LOL and HOL or HOH and HOL.

PARAMETER	SYMBOL	L CONDITIONS		ТҮР	МАХ	UNIT	
SUPPLY CURRENTS							
V _{DD} Quiescent Current	IDD	LI=HI=0V, V _{DD} =V _{HB} =4V		0.08		mA	
V _{DD} Operating Current	Iddo	f=500kHz		1.8		mA	
Total HB Quiescent Current	Інв	LI=HI=0V		0.09		mA	
Total HB Operating Current	Інво	f=500kHz		1.4		mA	
HB to Vss Current, Quiescent	I _{HBS}	HS=HB=80V		0.4		μA	
HB to Vss Current, Operating	I _{HBSO}	f=500kHz		0.35		mA	
INPUT				•			
Input Voltage Threshold	VIR	Rising Edge	1.85	2	2.15	V	
Input Voltage Threshold	VIF	Falling Edge	1.55	1.7	1.85	V	
Input Voltage Hysteresis	VIHYS			300		mV	
Input Pulldown Resistance	Rı			200		kΩ	
UNDER VOLTAGE PROTECTI	ON		•	•			
V_{DD} rising threshold	Vddr		3.2	3.8	4.5	V	
V _{DD} threshold hysteresis	Vddh			0.25		V	
HB rising threshold	VHBR		2.4	3.1	3.8	V	
HB threshold hysteresis	Vнвн			0.25		V	
LOW & HIGH SIDE GATE DRIV	/ER			•			
Low-level output voltage	Vol	I _{HOL} =I _{LOL} =100 mA		0.06		V	
High-level output voltage							
V _{OH} =V _{DD} -LOH or V _{OH} =HB-HOH	Vон	I _{НОН} =I _{∟ОН} =100 mA		0.2		V	
Peak source current	IOHL	HOH,LOH=0 V		1.2		А	
Peak sink current	Ioll	HOL,LOL=5 V		5		А	
High-level output leakage current	Іонік	HOH,LOH=0 V		0.2	1.0	μA	
Low-level output leakage current	Iollk	HOL,LOL=5 V		0.2	1.0	μA	

Electrical Characteristics (continued)

Typical values represent the most likely parametric norm at TA=25°C, and are provided for reference purposes only. Unless otherwise specified, $V_{DD}=V_{HB}=5V$, $V_{SS}=V_{HS}=0V$, No Load on LOL and HOL or HOH and HOL.

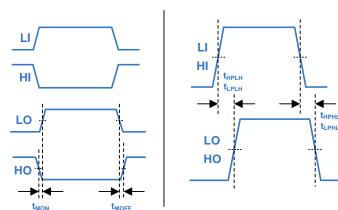
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNIT
BOOTSTRAP DIODE AND CLAMP						
Low Current forward voltage	V _{DL}	I _{∨DD-нв} =100µА		0.4		V
High Current forward voltage	VDH	I _{VDD-HB} =50mA		0.9		V
Dynamic resistance	RD	I _{VDD-HB} =50mA		1.85	3.6	Ω
HB-HS clamp regulation voltage	VCLAMP		4.5	5	5.5	V

Switching Characteristics(over operating free-air temperature range)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNIT
LO turn-off propagation delay	tlphl	LI falling to LOL falling		30	45	ns
LO turn-on propagation delay	t _{LPLH}	LI rising to LOH rising		30	45	ns
HO turn-off propagation delay	thphl	HI falling to HOL falling		30	45	ns
HO turn-on propagation delay	t _{HPLH}	HI rising to HOH rising		30	45	ns
Delay matching LO on & HO off	t _{MON}			1.5	8	ns
Delay matching LO off & HO on	t _{MOFF}			1.5	8	ns
HO rise time (0.5 V~4.5 V)	t _{HRC}	C _L =1000 pF		7		ns
LO rise time (0.5 V~4.5 V)	t _{LRC}	C∟=1000 pF		7		ns
HO fall time (0.5 V~4.5 V)	tнғс	C∟=1000 pF		4		ns
LO fall time (0.5 V~4.5 V)	tlfc	C∟=1000 pF		4		ns
Minimum input pulse width that changes the output	tPW			10		ns

Detailed Operating Description

The CS8201 is designed to drive both the high-side and the low-side enhancement mode FETs in a synchronous buck or a half-bridge configuration. The CS8201 input has two separate HI and LI, the signaleach driving high side and Low side GaN FETs. HI logic high turns on the high-side gate driver and turns off the lowside gate driver. In reverse,LI logic high turns off the high side gate driver and turns on the low side gate driver. If not used, it must be tied to the GND. These inputs must not be kept floating.


The CS8201 has an Under-voltage Lockout (UVLO) on both the V_{DD} and bootstrap supplies. When the V_{DD} voltage is below the threshold voltage of 3.8V, both the HI and LI inputs are ignored, to prevent the FETs from being partially turned on. Also if there is sufficient V_{DD} voltage, the UVLO will actively pull the LOL and HOL low. When the HB to HS bootstrap voltage is below the UVLO threshold of 3.1V, only HOL is pulled low.

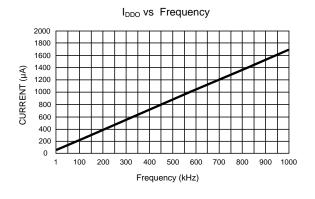
High-Side Driver

The high side driver uses the floating bootstrap capacitor voltage to drive the high-side FETs The bootstrap capacitor is recharged through an internal bootstrap diode each cycle when the HS pin is pulled below the V_{DD} voltage. For inductive load applications the HS node will fall to a negative potential, clamped by the low side FETs. Between HOH and HOL Pin, use a resistor(R_{HO}) to set the turn-on speed, the recommended resistance value is above 30 Ω .

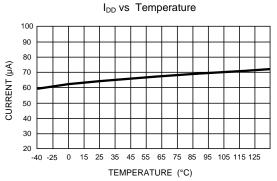
Low-Side Driver

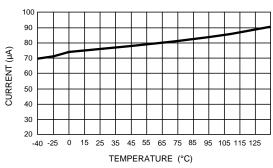
The low-side driver is designed to drive a ground referenced FETs, The bias to the low-side driver s internally connected to V_{DD} supply and GND. Between LOH and LOL Pin, use a resistor(R_{LO}) to set the turn-on speed, the recommended resistance value is above 10 Ω .

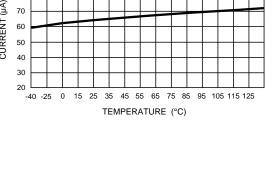
Timing Diagram

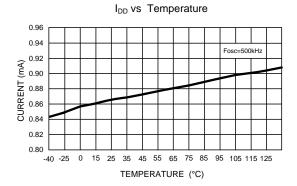

Truth Table

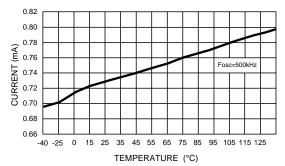
н	U	НОН	HOL	LOH	LOL
L	L	Open	L	Open	L
L	Н	Open	L	Н	Open
н	L	Н	Open	Open	L
н	Н	Н	Open	Н	Open

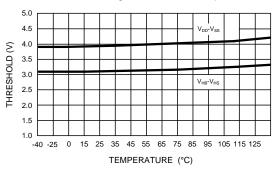


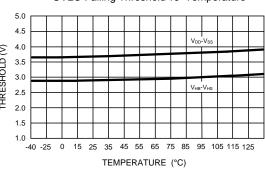


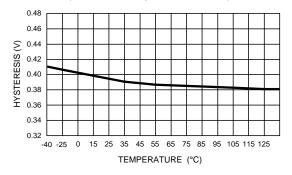


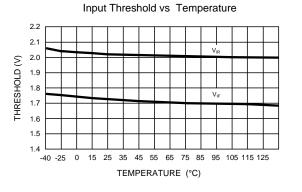

I_{HBO} vs Frequency CURRENT (µA) Frequency (kHz)

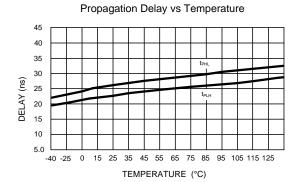

I_{HB} vs Temperature

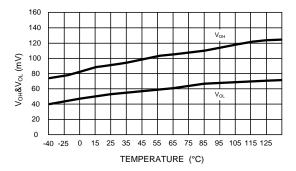

I_{HB} vs Temperature

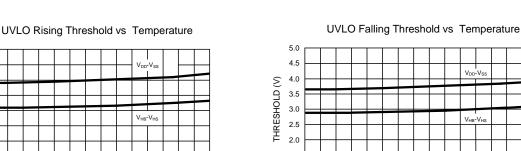



Typical Characteristics (continued)

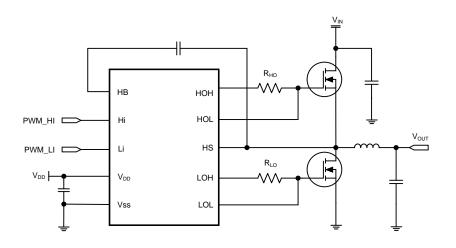

CS8201




Input Threshold Hysteresis vs Temperature



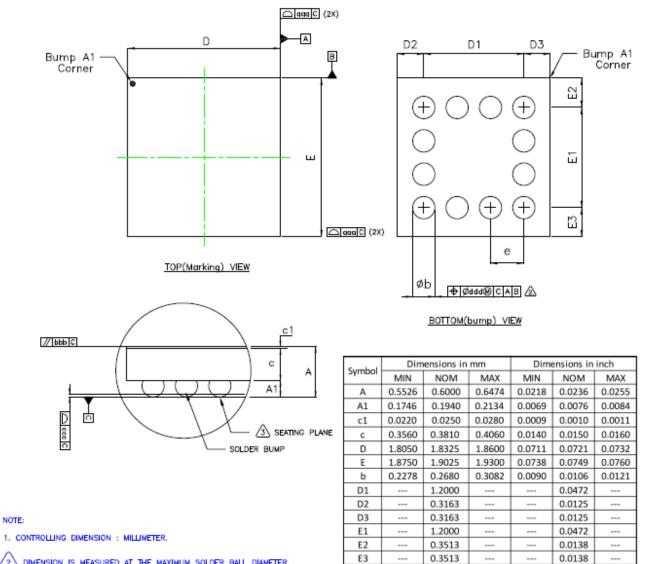
HO & LO Gate Drive vs Temperature



Rev. 1.0 9 Chiplus reserves the right to change product or specification without notice.

Typical Applications

Layout Guidelines


Gate drivers experience high di/dt during the switching transitions. So, the inductance at the gate drive traces must be minimized to avoid excessive ringing on the switch node. Gate drive traces should be kept as short and wide as practical. The input capacitor must be placed as close as possible to the IC. Connect the V_{SS} pin of the CS8201 as close as possible to the source of the lower FETs. The use of vias is highly desirable to maximize thermal conduction away from driver.

CS8201

Package outline

12 balls CSP with 1.86x1.93mm body size

2. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C

3. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS

e

aaa

bbb

CCC

ddd

0.4000

0.0275

0.0600

0.0300

0.0150

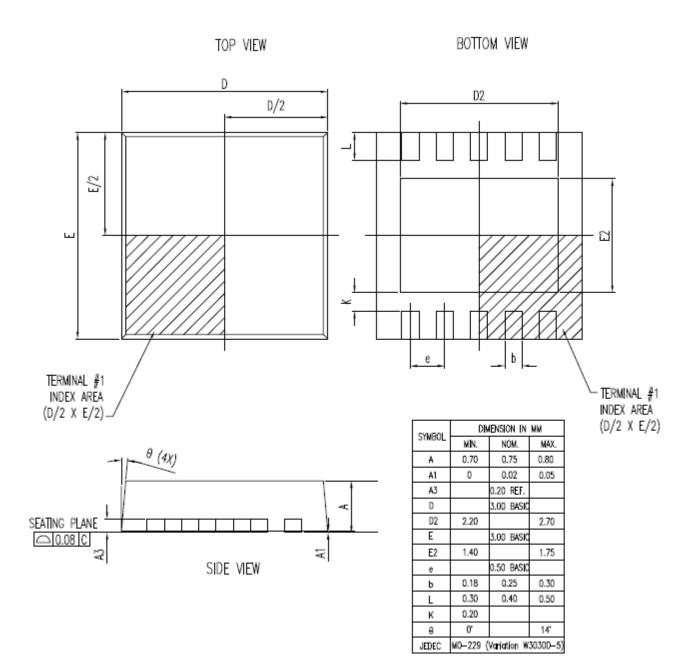
0.0157

0.0011

0.0024

0.0012

0.0006



10 L DFN-3x3x0.75mm

