

Cover Sheet and Revision Status									
版別	DCC	生效日	變更說明	發行人					
(Rev.)	No	(Eff. Date)	(Change Description)	(Originator)					
1.0	20160004	Mar. 22, 2016	New issue	Hank Lin					
2.0	20190016	Sep. 02, 2019	EOL 24L SSOP-150mil	Hank Lin					

i Rev. 2.0 Chiplus reserves the right to change product or specification without notice.

CS8817

]	
]	
]	
]	
]	
]	
]	
]	
]	
]	
]	
]	
]	
]	
]	

Description	1
Feature	1
Product Family	1
Pin Assignment	2
Typical Operating Circuits	2
Pin Description	2
Equivalent Circuits of I/O Pins	3
Absolute Maximum Ratings (Ta=25 °C, Tj(max) = 150 °C)	3
Electrical Characteristics (VDD = 3.3 V, Ta = 25 °C unless otherwise noted)	4
Electrical Characteristics (VDD = 5.0 V, Ta = 25 °C unless otherwise noted)	5
Switching Characteristics (VDD = 3.3 V, Ta = 25 °C unless otherwise noted)	6
Switching Characteristics (VDD = 5.0 V, Ta = 25 °C unless otherwise noted)	7
Timing Waveform	8
Order Information	.13
Package Outline	.14

Description

The CS8817, 16-channel constant current LED driver with double latch display technology, is suitable for any static and dynamic applications. The distinctive double latch technology enhances the visual refresh rate and low grayscale uniformity by increasing LED utilization rate. And the ghost image abatement is designed to eliminate ghosting of multiplexing LED modules due to parasitic capacitors.

The device operates over a 3.3V to 5V input voltage range ($\pm 10\%$) and provides 16 open-drain constant current sinking outputs that are rated to 17V and delivers up to 45mA of high accuracy current to each string of LED. The current at each output is programmable by means of an external current-sensing resistor.

The CS8817's on-board pass elements minimize the need for external components, while at the same time, providing $\pm 3\%$ channel current accuracy and $\pm 4\%$ chip current accuracy. Additional features include a $\pm 0.1\%$ regulated output current capability. The CS8817 is available in a 24L SSOP-236mil package and specified over the -40°C to +85°C ambient temperature range.

Feature

- > $3.3V \sim 5.0V$ Operating supply voltage (±10%)
- ➢ 5~45mA/5V Constant current output range
- 5~30mA/3.3V Constant current output range
- 17V Rated output channels for long LED strings
- > ±3% (max.) Current accuracy between channels
- ±4% (max.) Current accuracy between chips
- ±0.1% Output current regulation capability
- Double latch display technology (Patent approved)
- Visual refresh rate, LED utilization rate, grayscale level and low brightness uniformity are better than conventional pure drivers
- > Current setting by one external resister
- Ghost image abatement
- High HBM ESD protection (lout pin > 8000V)
- -40°C to +85°C Ambient temperature range

Product Family

CS8817AF ------ 24SSOP (236mil, 1.0mm lead-pitch)

CS8817

Pin Assignment

Typical Operating Circuits

Pin Description

Pin No.	Pin Name	Function					
1	GND	GND Pin.					
2	DI	Serial input data pin.					
3	DCK	Clock input terminal for shift register, rising edge trigger.					
4	LAT	Input terminal of data strobe.					
5~20	OUT0~OUT15	16 constant current output pin to drive common anode LEDs.					
21	ENB	Data output enable pin, when ENABLE=High-level, all OUT0~OUT15 are turned off, and when ENABLE=Low-level, all OUT0~OUT15 are enabled.					
22	DO	Serial data output pin for cascade operation.					
23	REXT	The external resistor connection pin to adjust the output current.					
24	VDD	3.3V~5.5V supply voltage pin.					

Equivalent Circuits of I/O Pins

DCK, DI, LAT, ENB terminals

DO terminal

Absolute Maximum Ratings (Ta=25 °C, Tj(max) = 150 °C)

Characteristics	Symbol	Rating	Unit
Supply Voltage	VDD	-0.3~7.0	V
Input Voltage	VIN	-0.3 to VDD+0.3	V
Output Current	IOUT	45	mA
Output Voltage	VOUT	-0.3 to 17	V
GND Pin Current	IGND	800	mA
Clock Frequency	FDCK	30	MHz
Thermal Resistance (On PCB)	Rth(j-a)	24L SSOP-236mil : 57.7	°C/W
Operating Temperature	Тор	-40 to 85	°C
Storage Temperature	Tstg	-55 to 150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

(2) All voltage values are with respect to ground terminal.

Electrical Characteristics (VDD = 3.3 V, Ta = 25 °C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	V	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	v	
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA	
Output Voltage (DO)	VOL	IOL = 1 mA		0.4		V	
	VOH	IOH= 1 Ma	VDD-0.4			v	
Output Current Skew (Channel-to-Channel)	dIOUT1	VOUT = 1.0V		±1.0	±3.0	%	
Output Current Skew (Chip-to-Chip)	dIOUT2	Rrext = 0.94 KΩ		±1.0	±4.0	%	
Output Current Skew (Channel-to-Channel)	dIOUT3	OUT3 VOUT = 1.0 V		±1.5	±3.0	%	
Output Current Skew (Chip-to-Chip)	dIOUT4	Rrext = 6.4 K Ω		±1.5	±4.0	%	
Output Voltage Regulation	% /VOUT	Rrext = 0.94 KΩ, VOUT = 1V ~ 3V		±0.1		0/ 1)/	
Supply Voltage Regulation	% /VDD	Rrext = 0.94 KΩ, VDD = 3V ~ 5.5V		±0.7	±1	% / V	
	I _{DD1(off)}	input signal is static Rrext = $3.69 \text{ K}\Omega$ all outputs turn off		1.6			
Supply Current	I _{DD2(on)}	input signal is static Rrext = $3.69 \text{ K}\Omega$ all outputs turn on		2.5			
	I _{DD3(off)}	input signal is static Rrext = 0.94 KΩ all outputs turn off		4.5		IIIA	
	I _{DD4(on)}	input signal is static Rrext = 0.94 KΩ all outputs turn on		5.5			

4 Rev. 1.0 Chiplus reserves the right to change product or specification without notice.

Electrical Characteristics (VDD = 5.0 V, Ta = 25 °C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	V	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V	
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA	
Output Voltage (DO)	VOL	IOL = 1 mA			0.4	V	
	VOH	IOH= 1 mA	VDD-0.4			,	
Output Current Skew (Channel-to-Channel)	dIOUT1	VOUT = 1.0 V		±1.0	±3.0	%	
Output Current Skew (Chip-to-Chip)	dIOUT2	Rrext = 0.94 KΩ		±1.0	±3.0	%	
Output Current Skew (Channel-to-Channel)	dIOUT3	VOUT = 1.0 V		±1.5	±3.0	%	
Output Current Skew (Chip-to-Chip)	dIOUT4	Rrext = 3.69 KΩ		±1.5	±4.0	%	
Output Voltage Regulation	% /VOUT	Rrext = 0.94 KΩ, VOUT = 1 V ~ 3 V		±0.1		0/ /) /	
Supply Voltage Regulation	% /VDD	Rrext = 0.94 KΩ, VDD = 3 V ~ 5.5 V		±0.6	±1	70 / V	
	I _{DD1(off)}	input signal is static Rrext = $3.69 \text{ K}\Omega$ all outputs turn off		1.6			
Current Current	I _{DD2(on)}	input signal is static Rrext = 3.69 KΩ all outputs turn on		2.5		A	
Supply Current	I _{DD3(off)}	input signal is static Rrext = 0.94 KΩ all outputs turn off		4.5		ША	
	I _{DD4(on)}	input signal is static Rrext = $0.94 \text{ K}\Omega$ all outputs turn on		5.5			

5 Rev. 1.0 Chiplus reserves the right to change product or specification without notice.

CS8817

UNI SYMBOL MIN. TYP. MAX. CONDITION **CHARACTERISTIC** Т ENB-to-OUT0 tpLH1 **Propagation Delay** ('L' to 'H') DCK-to-DO tpLH3 35 ENB-to-OUT0 tpHL1 **Propagation Delay** ('H' to 'L') DCK-DO tpHL3 35 ENB tw_(ENB) 120 VIH = VDD**Pulse Duration** LAT 20 tw_(LAT) VIL = GNDRrext = 1820Ω _____ DCK 15 tw_(DCK) ____ LAT 5 tsu_(LAT) ns _____ Setup Time VL =5.0 V DI tsu_(DI) 3 RL = 330 Ω LAT 20 th_(LAT) $CL = 13 \, pF$ Hold Time DI 4 th_(DI) **DO Rise Time** 20 tr_(DO) **DO Fall Time** tf_(DO) 20 Output Voltage Rise Time (turn-off) tor 55 Output Voltage Fall Time (turn-on) tof 50

Switching Characteristics (VDD = 3.3 V, Ta = 25 °C unless otherwise noted)

CS8817

Switching Characteristics (*VDD* = 5.0 V, *Ta* = 25 °C unless otherwise noted)

CHARAC	TERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	υνιτ
Propagation Delay	ENB-to-OUT0	tpLH1					
('L' to 'H')	DCK-to-DO	tpLH3			24		
Propagation Delay	ENB-to-OUT0	tpHL1					
('H' to 'L')	DCK-DO	tpHL3			24		
	ENB	tw _(ENB)		80			
Pulse Duration	LAT	tw _(LAT)	VIH = VDD	20			
	DCK	tw _(DCK)	VIL = GND Rrext = 1820 Ω	15			
Sotup Timo	LAT	tsu _(LAT)		5			ns
Setup Time	DI	tsu _(DI)	VL =5.0 V RL = 330 Ω∏	3			
Hold Time	LAT	th _(LAT)	CL = 13 pF	20			
	DI	th _(DI)		4			
DO Rise Time		tr _(DO)			15		
DO Fa	III Time	tf _(DO)			15		
Output Voltage R	ise Time (turn-off)	tor			35		
Output Voltage F	all Time (turn-on)	tof			35		

Switching Characteristics Test Circuit

7

Rev. 1.0 Chiplus reserves the right to change product or specification without notice.

CS8817

Timing Waveform

Chiplus reserves the right to change product or specification without notice.

Ghost Image Abatement

CS8817 provides internal pre-charge circuit to reduce ghost phenomenon of multiplexing display due to parasitic capacitors. When ENB=high, the voltage of output channels will be pulled high from the rising edge of LAT signal to the falling edge of ENB signal (Tghost), so the reverse bias would only happened in Tghost. Such design can prevent LED damage due to the reverse bias for long time. In Tghost, the high voltage on the parasitic capacitor prevents the inrush current resulting from turning on the switching PMOS of next scan line. (It is recommended to let Tghost \geq 2000ns, where SW signal is the multiplexing switch signal.)

Chiplus reserves the right to change product or specification without notice.

Double Latch Display Technology

CS8817 adopts the new double latch display technology to enhance display effectiveness. By saving an extra bit, CS8817 could receive a control pattern that a ENB signal extends over a LAT signal. The visual refresh rate, the LED utilization rate, the grayscale level and the low grayscale uniformity would be better than conventional pure drivers.

CS8817

Reference Resistor

The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

lout (mA) = $\frac{18.6}{\text{Rrext}(K\Omega)}$

Where Rrext is a resistor placed between REXT and GND For example, lout is 20mA when Rrext= 930Ω and lout is 5mA when Rrext= $3.7K\Omega$

Constant-Current Output

The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the CS8817 could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.

12

Rev. 1.0

Power Dissipation

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation

PD (practical) = $V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Dut_{y_{(0)}} + \dots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Dut_{y_{(N)}}$, where *N*=1 to 15 In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package types and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD(max) = \frac{Tj(max)(C) - Ta(C)}{Rth(j-a)(C/Watt)}$$

The PD (max) declines as the ambient temperature rises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in these two different packages.

Maximum Power Dissipation v.s. Ambient Temperature

Order Information

Part No.	Package Type	Lead Pitch		
CS8817AF	24SSOP(236mil)	1.0mm		

CS8817

Package Outline

24L SSOP-236mil

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

UNIT	MBOL	Α	A1	A2	b	b1	с	c1	D	e	Е	Н	L	θ°
	Min.	-	0.05	1.30	0.30	0.30	0.10	0.10	12.80	1.00	5.80	7.70	0.25	0
mm	Nom.	-	0.10	1.50	0.40	0.40	0.15	0.15	13.00	1.00	6.00	8.00	0.45	-
	Max.	1.90	0.15	1.70	0.52	0.50	0.27	0.25	13.20	BSC	6.20	8.30	0.65	10

14

Chiplus reserves the right to change product or specification without notice.